Pushing the limits of room temperature neutron electric dipole moment measurements with n2EDM

Romain VIROT

European Research Council

Introduction

Particle with non-zero permanent Electric Dipole Moment (EDM):

- P and T violation
- CP violation (assuming CPT conservation)

- 1. B violation
- 2. C and CP violation
- 3. Departure from thermal eq.

05/11/2018

GDR InF- Arles, Nov. 5th-7th 2018

ov. 5th-7th 2018

2

Introduction

Beyond the Standard Model (BSM) physics are required to explain observed BAU

More CP-violation larger EDM

Neutron EDM best limits:

- Direct: $3.0 imes 10^{-26}$ e.cm

Baker et al, Phys Rev Lett 97, 131801 (2006) Pendlebury et al, Phys Rev D 92, 092003 (2015)

- Derived from 199 Hg (sole source assumption): 1.6×10^{-26} e.cm

arXiv:1601.04339v4 [physics.atom-ph] 17 Aug 2017

SM background (CKM) $\sim 10^{-32}$ e.cm

Strong discovery potential!

05/11/2018

CINTS

Ramsey method of time separated oscillating fields

 Larmor frequency of a neutron in a parallel (↑↑) / anti-parallel (↑↓) B and E field configuration:

 $h\nu_{\uparrow\uparrow} = -2(\mu_{\rm n}B_{\uparrow\uparrow} + d_{\rm n}E_{\uparrow\uparrow})$ $h\nu_{\uparrow\downarrow} = -2(\mu_{\rm n}B_{\uparrow\downarrow} - d_{\rm n}E_{\uparrow\downarrow})$

 Neutron EDM is extracted from the differential measurement between the two frequencies v_{↑↑} and v_{↑↓}:

$$\underbrace{d_{\mathrm{n}}}_{n} = \frac{h(\nu_{\uparrow\downarrow} - \nu_{\uparrow\uparrow}) - 2\mu_{\mathrm{n}}(B_{\uparrow\uparrow} - B_{\uparrow\downarrow})}{2(E_{\uparrow\uparrow} + E_{\uparrow\downarrow})}$$

INTENSITY

frontier

Ultracold neutrons

Hardest challenges: Number of neutrons and control of the B field!

Ultracold neutron (UCN)

- <300 neV (~3.5 mK)
- Total reflection from surfaces of different materials
- Can be trapped in appropriate material volume for very long time (100+ sec.)
- ~1 neV/cm
- 60 neV/T

- Difficult to produce in large quantity still
- Produced from cold neutrons (Mechanical turbine, Superfluid He, Solid D2)
- Source extraction is difficult

Worldwide competition!

UltraCold Neutron sources and neutron EDM experiments around the world

CINIS

Current limit:

Sussex-RAL-ILL collaboration $d_n < 3 \times 10^{-26} e cm$ (90% C.L.)

Baker et al, Phys Rev Lett 97, 131801 (2006) Pendlebury et al, Phys Rev D 92, 092003 (2015)

Trapped UCN with $N_{UCN} = 0.5$ UCN/cm3

|E| = 5 - 10 kV/cm

100 sec storage time

05/11/2018

The n(2)EDM collaboration

(CMLS)

Around 50 people, 15 institutions, 7 countries.

Experiment(s) located at the Paul Scherrer Institute (PSI), Switzerland

05/11/2018

From nEDM to n2EDM @ PSI...

INTENSITY frontier

aboratoire de Physiqu

From nEDM to n2EDM @ PSI...

05/11/2018

05/11/2018

Double precession chambers and their magnetometers

INTENSITY

Dual precession chambers #3:

- 12 cm height
- Baseline diameter: 80 cm
- Final diameter: 100 cm

X8 times more neutron (/nEDM) ~ 120 000 UCN/cycle (300 sec)

Magnetometry **#8 & 9**:

- 1. Hg co-magnetometer:
 - ¹⁹⁹Hg atoms explore the same volume as the UCN
 - Very efficient correction of the neutron frequency due to magnetic field drifts
 - But adds some effects to correct for

Grephile

- 2. Array of Cs magnetometer:
 - ~100 Cs magnetometers above and below the electrode stack
 - Magnetically silent (all optical)
 - Used to minimize the magnetic field gradients (with Trim coils)

05/11/2018

The challenge of the magnetic field generation...

INTENSITY frontier

... and its measurement!

INTENSITY frontier

Field mapper robot:

05/11/2018

- Completely non-magnetic •
- Moving low-noise 3-axis fluxgate
- Mapping campaign each year: •
 - Characterization of the mag. configurations
 - Remnant field measurement

Grepsble

aboratoire de Physia

CINITS

GDR InF- Arles, Nov. 5th-7th 2018

 B_{z} (pT)

From nEDM to n2EDM @ PSI...

Conclusion

n2EDM schedule:

Spring/summer 2019:

- Installation of the inner part of the MSR
- Coils assembly and commissioning (with the upgraded field mapper)
- Vacuum tank installation

End of 2019:

- Installation of the detectors
- Installation of the magnetometers

2020:

• Precession chambers and High Voltage

~2021: First data taking!

	nEDM 2016	n2EDM baseline
diameter (cm)	47	80
α	0.75	0.8
E (kV/cm)	11	15
<i>T</i> (s)	180	180
N (per cycle)	15'000	121'000
$\sigma(d_n)$ (per day)	$11 \times 10^{-26} e \text{ cm}$	$2.6 \times 10^{-26} e \text{ cm}$
$\sigma(d_{\rm n})$ (total)	$9.8 \times 10^{-27} \ e \ cm$	$1.1 \times 10^{-27} \ e \ \mathrm{cm}$

500 data days

05/11/2018

Thanks for your attention!

05/11/2018

GDR InF- Arles, Nov. 5th-7th 2018

16

Backup Slides

CINIS

nEDM at the Paul Scherrer Institute (PSI)

05/11/2018

Hg co-magnetometer:

- ¹⁹⁹Hg atoms explore the same volume as the UCN
- Very efficient correction of the neutron frequency due to magnetic field drifts
- But adds some effects to correct for (see next slides)

Use of the frequency ratio $\boldsymbol{\mathcal{R}}$:

Single cell:
$$\mathcal{R} = \frac{\nu_{\rm n}}{\nu_{\rm Hg}} = \left|\frac{\gamma_{\rm n}}{\gamma_{\rm Hg}}\right| \left(1 + \frac{\langle z \rangle G}{B_0}\right) + \frac{E}{\pi \hbar f_{\rm Hg}} d_{\rm n}$$

Double cells:
$$\mathcal{R}^{\mathrm{T}} - \mathcal{R}^{\mathrm{B}} = \frac{2E}{\pi\hbar\nu_{\mathrm{Hg}}}d_{\mathrm{n}} + \left|\frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}}\right|(\langle z \rangle^{\mathrm{T}} - \langle z \rangle^{\mathrm{B}})\frac{G}{B_{0}}$$

INTENSITY

frontier

05/11/2018

Grepsble

aboratoire de Physia