

Test of Lepton Universality using Λ" decays

Vitalii Lisovskyi

Laboratoire de l'Accélérateur Linéaire, Orsay

Supervisors: Marie-Hélène Schune and Yasmine Amhis

GDR-InF Workshop, 5 November 2018

What is Lepton Universality?

- SM: couplings of all (charged) leptons to the gauge bosons should be identical
	- (up to the order of mass/phase-space corrections)

• This means e.g.
$$
\frac{BR(Z \rightarrow \mu^+ \mu^-)}{BR(Z \rightarrow e^+ e^-)} = 1
$$

• Should be also true for virtual off-shell Z or γ

• This implies e.g.
$$
\frac{BR(J/\psi \rightarrow \mu^+ \mu^-)}{BR(J/\psi \rightarrow e^+ e^-)} = 1
$$

- This property is called **Lepton Universality**
- Nice summary of previous tests: arXiv:1809.06229

What keeps us awake at night?

• **Penguins.**

Wake up at 6 AM and go to Arles.

- Are $b \rightarrow s l^+ l^-$ transitions lepton-universal?
	- SM: yes sure
	- Penguin: wait a second...

Very rare $(BR \sim 10^{-7})$ Sensitive to New Physics contributions

Ratios of ratios of ratios...

• Few remarkable measurements in the $b \to s l^+ l^-$ transitions:

• Additional anomalies in angular analyses and absolute BR values

Penguins or...?

Standard Model penguins

Penguins or...?

Standard Model penguins **New Physics** New Physics

Power of indirect searches

Q: is it a real thing? **A: Need more measurements!**

- Most popular scenarios:
	- **Leptoquarks**
	- Z'
- In any case, these new particles should be accessible for direct observation at ATLAS and CMS in near future

Don't forget the baryons!

- We live in a world made of love and cats baryons
	- However, baryons are less explored than mesons
	- Exploring another spin configuration, possible surprises?

 $BR(\Lambda_b\rightarrow pK\mu^+\mu^-)$

- Laws in the baryon system are not always similar to mesons
- We want to measure $R_{pK} =$

Excited lambdas are so exciting

- Why this final state: easier experimentally than long-lived Λ^0
	- Develop a pilot analysis on higher-statistics inclusive mode, then catch up with others (also ongoing)
- LHCb used two channels to measure the Λ_b^0 lifetime with 2011 data (1fb⁻¹):
	- **JHEP04(2014)114** uses $\Lambda^0 J/\psi$ decay and has about 4k Λ_b^0 events
	- Phys. Rev. Lett. 111, 102003 (2013) uses pKJ/ψ and has about 15.5k Λ_b^0 events

Theorist's nightmare

- What is easier for experimentalists, is not always the best from theory point of view
- Very complicated pK spectrum: e.g. $\Lambda_b^0 \to pKJ/\psi$ [PRL 115, 072001 (2015)]
- No guarantee that the spectrum is exactly the same in rare modes [**JHEP 06 (2017) 108**
- Makes theory predictions complicated (see talk by Martín tomorrow)
- We are still rather confident that **in the SM** $R_{pK} \approx 1$, but in New Physics models...
	- A) if NP is V-A only, all R_X are similar [arXiv:1411.4773]
	- B) if NP has V+A currents, we have spin dependency, might have some fun
		- PhD topic in 2035: Measurement of R_{pK} as a function of $m(pK)$

The lowcost penguin laboratory

• How to build a proper detector to study $\Lambda_b^0 \to pKl^+l^-$ decays?

• **Our wish list:**

- Large Λ_b^0 production rate
- Good acceptance of b-hadrons
- Good primary vertex resolution
- Good hadron PID
- Muon and electron PID
- Good invariant mass resolution
- Trigger on these events
- Reasonable size and cost

Backgrounds which help

What's important, these tree-level decays are lepton-universal!

The global strategy of the analysis

1) Compute
$$
r_{J/\psi} = \frac{BR(\Lambda_b^0 \rightarrow pKJ/\psi(\rightarrow e^+e^-))}{BR(\Lambda_b^0 \rightarrow pKJ/\psi(\rightarrow \mu^+ \mu^-))}
$$

- It should be a) equal to one and b) independent of the kinematical variables
- Very strong control of efficiencies, powerful cross-check

2) Same for
$$
r_{\psi(2S)} = \frac{BR(\Lambda_b^0 \rightarrow pK\psi(2S)(\rightarrow e^+e^-))}{BR(\Lambda_b^0 \rightarrow pK\psi(2S)(\rightarrow \mu^+\mu^-))}
$$

The global strategy of the analysis

1) Compute $r_{J/\psi} =$ $BR(\Lambda_b^0 \rightarrow pKJ/\psi (\rightarrow e^+e^-))$

- $BR(\Lambda_b^0 \rightarrow pKJ/\psi (\rightarrow \mu^+ \mu^-))$ • It should be a) equal to one and b) independent of the kinematical variables
- Very strong control of efficiencies, powerful cross -check

2) Same for
$$
r_{\psi(2S)} = \frac{BR(\Lambda_b^0 \rightarrow pK\psi(2S)(\rightarrow e^+e^-))}{BR(\Lambda_b^0 \rightarrow pK\psi(2S)(\rightarrow \mu^+\mu^-))}
$$

- 3) Compute the double ratio $R_{pK} =$ $BR(\Lambda_b \to pK\mu^+\mu^-)$ $BR(\Lambda_b \to pKJ/\psi(\mu^+\mu^-))$ ∗ $BR(A_b \rightarrow pKJ/\psi(e^+e^-))$ $BR(A_b \rightarrow pKe^+e^-)$
	- Normalize to high-statistics modes
	- Cancel some uncertainties

Easy? Well, not so much

MY HOBBY: CANCELLING TERMS

Troubles on our way 15

Some key beasts to fight:

Systematic uncertainties Partially reconstructed **backgrounds** Corrections to the simulation Bremsstrahlung misID **backgrounds Electron reconstruction** and trigger

Combinatorial **background**

Backgrounds which are not nice

16

- Misidentifications
	- Region of proton momentum lower than 20 GeV does not have a good PID
	- Apply a cut above 10 GeV
	- Include the rest into the fit
	- $B_s \rightarrow K K l^+ l^-$, $B^0 \rightarrow \pi K l^+ l^-$, swaps...
- Partially reconstructed backgrounds
	- One or more particles can be lost
	- In particular, semileptonic decays having same *visible* final state
	- Or from excited states of final state hadrons...
	- Usually located below the signal peak so of less concern
- Combinatorial background

But there's an elephant in the room

- The most significant background is coming from **combining** the random tracks
- We train a Boosted Decision Tree to distinguish between signal and combinatorial background
- Exploit the difference in kinematics and geometry

Electron reconstruction and bremsstrahlung **18**

- **Electrons** emit **bremsstrahlung** in interactions with material
- To reconstruct the true energy of the electron, we search for emitted photons and **correct** for their energy
- It is not always possible to find the 'proper' photon: ECAL is too busy
- **Poor resolution on electron modes**

Electron reconstruction and bremsstrahlung **19**

Trigger categories

- As I just said, ECAL is very busy plenty of electrons and photons (incl. from π^0)
- Thus, it is hard to trigger on electrons
	- Compare with super-easy triggering on muons: only muons fly through the muon chamber
- To gain more statistics, we can trigger on
	- Leptons electron or muon (L0Lepton = L0L)
	- Hadrons proton or kaon too inefficient to be accounted for
	- Rest of the event (L0TIS = L0I)
- Trigger efficiencies in these cases are very different
	- So these 'trigger categories' are analyzed separately
	- Separate fits, separate results...
	- Only in the end, results are combined

Efficiencies and corrections

- $R_{pK} =$ $BR(\Lambda_b\rightarrow pK\mu^+\mu^-)$ $BR(\Lambda_b\rightarrow pKJ/\psi(\mu^+\mu^-))$ ∗ $BR(\Lambda_b\rightarrow pKJ/\psi(e^+e^-))$ $BR(A_b \rightarrow pKe^+e^-)$
- What we really measure is a number of events (N)
- $R_{pK} =$ $N(A_b \rightarrow pK\mu^+\mu^-)$ $\varepsilon(A_b\rightarrow pK\mu^+\mu^-)$ ∗ $\varepsilon(A_b\rightarrow pKJ/\psi(\mu^+\mu^-))$ $N(A_b\rightarrow pKJ/\psi(\mu^+\mu^-))$ ∗ $N(A_b\rightarrow pKJ/\psi(e^+e^-))$ $\varepsilon(A_b\rightarrow pKJ/\psi(e^+e^-))$ ∗ $\varepsilon(A_b\rightarrow pKe^+e^-)$ $N(A_b \rightarrow pKe^+e^-)$
- Efficiencies (ϵ) are taken from the simulation
	- An important step is to correct for possible data-simulation discrepancies
- Having a correct simulation is very important at LHCb
	- Work not on the trigger efficiency plateau
	- Ageing, different running conditions...
	- We are doing high-precision measurements
- Corrections are quite small but important though

Corrections to the simulation

- Correct for event multiplicity, kinematics, trigger and PID response
- Corrections are data-driven

• When done, check the data-MC agreement in the BDT variable

Fits to real data

- Include signal peak and background components
- Fits in the J/ψ window:

Power of mass constraints

- We know the true mass of J/ψ
- Why not recompute the invariant mass using it?

24

in nonresonant

 $\overline{p}Kl^{+}l^{-}$ channels

<u>'THIS AT HOME!'</u>

Cross-checks: $r_{1/4}$ and friends

- Single ratio $BR(\Lambda_b \to pKJ/\psi(e^+e^-))/BR(\Lambda_b \to pKJ/\psi(\mu^+\mu^-))$: requires full efficiency control J/ψ
- Blind: multiplied by a blinding factor [equal for all categories]
- 1) compare blinded **central value** per dataset
- 2) check the **trend** in various variables in each category
- ... (tens of other cross-checks inbetween...)
- N) **unblind** and check if the central value is compatible with 1
- Then perform similar studies for $\Lambda_h \to pK\psi(2S)$

- When we are happy with all the cross-checks, we can study the nonresonant mode
- Perform consistency cross-checks on $\Lambda_h \to pK \mu^+ \mu^-$
- $\Lambda_h \rightarrow pK e^+e^-$ is kept blind!
	- (We should not know the R_{pK} value before analysis framework settled!)
- Finally, the result: $R_{pK} =$

Thank you for your attention! Questions?

Backup slides below

Theorist's point of view

K

• Model-independent effective approach: $\mathcal{H}_{eff}(SM) \sim \sum C_i O_i$

• Precise predictions in the SM:
Soft photon photon/Z Z $\mathcal{C}_7^{\text{SM}} = -0.29, \ \mathcal{C}_9^{\text{SM}} = 4.1, \ \mathcal{C}_{10}^{\text{SM}} = -4.3$

Theorist's point of view

29

K

• Model-independent effective approach: $\mathcal{H}_{eff}(SM) \sim \sum C_i O_i$

- Precise predictions in the SM: $Soft\,pho\bar{t}$ photon/Z Z
- To describe New Physics:
	- $C_{i(exp)} = C_{i(SM)} + C_{i(NP)}^l$
- These effects look **coherent**
- Strong evidence for non-zero $\mathcal{C}^\mu_{9(NP)}$ μ

Fits of theory to the experimental data for $b \to s l^+ l^-$ Using ∼100 observables from various experiments

 \overline{B}

Constraining New Physics models

• Putting **indirect** constraints on New Physics models – reaching the scale higher than accessible for the LHC direct searches...

Candidates / (50 MeV/ c^2)

35 Et

25日

20

15 E

10

30

• ... But also performing the direct seraches in the forward region

Insidious penguins

- The transitions between samecharge quarks $-$ FCNC $*$ – are forbidden *at the tree level*
- They proceed via **penguin diagrams**
- This makes these processes **very rare**, but also **sensitive** to the possible New Physics contributions
- *And this is where we observe something intriguing…*
- * FCNC = Flavor Changing Neutral Currents

Ratios of ratios of ratios ...

• Few remarkable measurements in the $b \to s l^+ l^-$ transitions:

- Also some anomalies in the $b \to c l^+ \nu_l$ transitions
- New/updated measurements expected from LHCb and BELLE-II

Corrections in work 33

• Some variables are not properly modeled in the simulation:

Cross-checks

34

- So, now we know how to get yields and efficiencies
- Various tests to be performed before unblinding the final result

• $R_{pK} =$ $N(A_b \rightarrow pK\mu^+\mu^-)$ $\varepsilon(A_b\rightarrow pK\mu^+\mu^-)$ ∗ $\sqrt{\varepsilon(\Lambda_b\to pKJ/\psi(\mu^+\mu^-))}$ $N(A_b\rightarrow pKJ/\psi(\mu^+\mu^-))$ ∗ $N(A_b\rightarrow pKJ/\psi(e^+e^-))$ $\varepsilon(A_b\rightarrow pKJ/\psi(e^+e^-))$ ∗ $\varepsilon(A_b\rightarrow pKe^+e^-)$ $N(A_b \rightarrow pKe^+e^-)$

Should be 1 if everything is correct

- Should not only be 1, but also independent of kinematical variables (e.g. flat in bins of $p_T(\Lambda_h)$)
- Evaluate separate BRs and compare to PDG
	- $BR(\Lambda_h \rightarrow pK\mu^+\mu^-)$
	- $BR(\Lambda_h \to pK\psi(2S))$ with $\psi(2S) \to \mu^+\mu^-$ or e^+e^-
	- $BR(A_h \rightarrow pK\gamma)$ with conversions $\gamma \rightarrow e^+e^-$

What about baryons?

- Laws in the baryon system are not always similar to mesons
	- E.g. charmonia ($c\bar{c}$) states production • $BR(\Lambda_b \rightarrow pK\psi(2S))$ $BR(\Lambda_b\rightarrow pKJ/\psi)$ $= 0.21,$ $BR(\Lambda_b \rightarrow pK\chi_{c2})$ $BR(\Lambda_b \rightarrow pK\chi_{c1})$ = 1 .02 , while • $BR(B^0 \rightarrow K^* \psi(2S))$ $BR(B^0 \rightarrow K^* J/\psi)$ $= 0.46,$ $BR(B^0 \rightarrow K^* \chi_{c2})$ $BR(B^0 \rightarrow K^* \chi_{c1})$ $= 0.20$