Flavour anomalies and (fundamental) partial compositeness

Presented by Peter Stangl

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Outline

- Motivation: Flavour anomalies
- 2 Violation of lepton flavour universality in composite Higgs models
- 8 Flavour analysis of minimal fundamental partial compositeness
- 4 Summary

Based on:

Wolfgang Altmannshofer, Christoph Niehoff, PS, David M. Straub [arXiv:1703.09189] Wolfgang Altmannshofer, PS, David M. Straub [arXiv:1704.05435] Christoph Niehoff, PS, David M. Straub [arXiv:1503.03865] Francesco Sannino, PS, David M. Straub, Anders E. Thomsen [arXiv:1712.07646]

Outline

Motivation: Flavour anomalies

- 2 Violation of lepton flavour universality in composite Higgs models
- 3 Flavour analysis of minimal fundamental partial compositeness
- 4 Summary

$b ightarrow s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by $2-3\sigma$:

- Angular observable P_5' in $B \to K^* \mu^+ \mu^-$. LHCb, arXiv:1512.04442
- ▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

$$egin{aligned} \mathcal{O}_9^\ell &= (ar{s}\gamma_\mu \mathcal{P}_L b)(ar{\ell}\gamma^\mu\ell) \ \mathcal{O}_{10}^\ell &= (ar{s}\gamma_\mu \mathcal{P}_L b)(ar{\ell}\gamma^\mu\gamma_5\ell) \end{aligned}$$

see also fits by other groups: Capdevila et al., arXiv:1704.05340 D'Amico et al., arXiv:1704.05438 Geng et al., arXiv:1704.05446 Ciuchini et al., arXiv:1704.05447 Mahmoudi et al., arXiv:1611.05060 Peter Stand (LAPTh)

GDR-InF annual workshop, Arles, 06 November 2018

Hints for LFU violation in neutral current decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

$$R_{\mathcal{K}^{(*)}} = rac{BR(B o \mathcal{K}^{(*)} \mu^+ \mu^-)}{BR(B o \mathcal{K}^{(*)} e^+ e^-)}$$

see also fits by other groups: Capdevila et al., arXiv:1704.05340 D'Amico et al., arXiv:1704.05438 Geng et al., arXiv:1704.05446 Cluchini et al., arXiv:1704.05447

GDR-InF annual workshop, Arles, 06 November 2018

Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529

Hints for LFU violation in charged current decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by 3.6-3.8 σ . BaBar, arXiv:1205.5442, arXiv:1303.0571 LHCb, arXiv:1506.08614, arXiv:1708.08856

R(D*) 0.5 $\Delta \gamma^2 = 1.0$ contours Belle PRD92.072014(2015) 11803(2015) Average of SM predictions Belle, PRD94.072007(2016) 0.45 $R(D) = 0.299 \pm 0.003$ Belle, PRL118.211801(2017) LHCb. PRL120.171802(2018) $R(D^*) = 0.258 \pm 0.005$ Average 0.4 $R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\ell\nu)}$ 0.35 0.3 $\ell \in \{\boldsymbol{e}, \mu\}$ 0.25 0.2 0.2 0.3 0.4 0.5 0.6 R(D)HFLAV, arXiv:1612.07233

Explaining the anomalies

see also talk by Méril Reboud

Construct model to address flavour anomalies

Plethora of models constructed to specifically address flavour anomalies.

This talk: analyze potential of existing models to explain anomalies Consider models originally constructed to address **naturalness problem** of SM:

- Composite Higgs model (CHM) with partial compositeness.
- UV completion of CMH: Minimal Fundamental Partial Compositeness.

Outline

- Motivation: Flavour anomalies
- 2 Violation of lepton flavour universality in composite Higgs models
- In the second second
- 4 Summary

Composite Higgs models

Solving the naturalness problem

- Higgs not elementary but bound state of new strong interaction.
- Lightness of Higgs compared to new physics scale: Higgs as pseudo-Nambu-Goldstone boson (pNGB) of spontaneously broken global symmetry.

 $\mathcal{L} = \mathcal{L}_{\textit{elemenary}} + \mathcal{L}_{\textit{composite}}$

Kaplan, Georgi, Phys.Lett. B136 (1984) 183 Dugan, Georgi, Kaplan, Nucl.Phys. B254 (1985) 299

Composite Higgs models

Solving the naturalness problem

- Higgs not elementary but bound state of new strong interaction.
- Lightness of Higgs compared to new physics scale:
 Higgs as pseudo-Nambu-Goldstone boson (pNGB)
 of spontaneously broken global symmetry.

$$\mathcal{L} = \mathcal{L}_{\textit{elemenary}} + \mathcal{L}_{\textit{composite}} + \mathcal{L}_{\textit{mixing}}$$

Avoiding flavour constraints

- Elementary fermions couple linearly to composite fermions.
- Mass eigenstates are mixture of both: partial compositeness.

Kaplan, Nucl. Phys. B365 (1991) 259-278

Kaplan, Georgi, Phys.Lett. B136 (1984) 183 Dugan, Georgi, Kaplan, Nucl.Phys. B254 (1985) 299

Violation of LFU in composite Higgs models

Niehoff, PS, Straub, arXiv:1503.03865

Considering only anomalies in rare B decays

 $b \rightarrow s \mu \mu$ anomaly and hints for violation of LFU in R_{K} , R_{K^*} measurements.

LFU violating $b ightarrow s \, \mu \mu$ transition

Only one possibility to violate LFU in $b \rightarrow s \mu \mu$ at tree-level:

Experimental data suggests

• $C_9^{\mu} < 0$: sizable left- and right-handed degrees of compositeness s_{μ_I} and s_{μ_B} .

•
$$C_9^{\mu} = -C_{10}^{\mu} < 0$$
: only sizable s_{μ_L} .

Violation of LFU in composite Higgs models

Niehoff, PS, Straub, arXiv:1503.03865

Considering only anomalies in rare B decays

 $b \rightarrow s \mu \mu$ anomaly and hints for violation of LFU in R_{K} , R_{K^*} measurements.

LFU violating $b ightarrow s \, \mu \mu$ transition

Only one possibility to violate LFU in $b \rightarrow s \mu \mu$ at tree-level:

Experimental data suggests

- $C_9^{\mu} < 0$: sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} . $s_{\mu_L} \cdot s_{\mu_R}$ enters μ mass; has to be small!
- $C_9^{\mu} = -C_{10}^{\mu} < 0$: only sizable s_{μ_L} .

Violation of LFU in composite Higgs models

Niehoff, PS, Straub, arXiv:1503.03865

Considering only anomalies in rare B decays

 $b \rightarrow s \mu \mu$ anomaly and hints for violation of LFU in R_{K} , R_{K^*} measurements.

LFU violating $b ightarrow s \, \mu \mu$ transition

Only one possibility to violate LFU in $b \rightarrow s \mu \mu$ at tree-level:

Experimental data suggests

- $C_9^{\mu} < 0$: sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} . $s_{\mu_L} \cdot s_{\mu_R}$ enters μ mass; has to be small!
- $C_9^{\mu} = -C_{10}^{\mu} < 0$: only sizable s_{μ_L} . Seems possible!

Constraints

Constraints from B_s - \overline{B}_s mixing

- Z'bs coupling implies contribution to $B_s \overline{B}_s$ mixing.
- Upper bound on Z'bs coupling leads to lower bound on s_{µ1}.

Constraints from electroweak precision tests

 $Z'\mu_L\mu_L$ coupling generically implies corrections to $Z\mu\mu$, $W\mu\nu_\mu$, and $Z\nu_\mu\nu_\mu$ couplings.

- Zµµ coupling can be protected by discrete symmetry.
 Agashe et al., arXiv:hep-ph/0605341
 Agashe, arXiv:0902.2400
- Modification of Wµν_µ coupling leads to correction of Fermi constant. Yields upper bound on s_{µ1}.
- Modified $Z\nu_{\mu}\nu_{\mu}$ coupling can explain LEP 2σ deficit in invisible Z width. Improves agreement with data!

Results

Outline

- Motivation: Flavour anomalies
- 2 Violation of lepton flavour universality in composite Higgs models
- 8 Flavour analysis of minimal fundamental partial compositeness
- 4 Summary

Fundamental partial compositeness

Sannino, Strumia, Tesi, Vigiani, arXiv:1607.01659

- New strong interaction: "Technicolor" (TC).
- SM fermions and vector bosons + "technifermions" \mathcal{F} + "techniscalars" \mathcal{S} .
- Higgs: (\mathcal{FF}) bound state.
- Composite fermions: (*FS*) bound states.
- SM fermions f and TC fields \mathcal{F}, \mathcal{S} coupled by fundamental Yukawa couplings y_f .

Comparison with effective composite Higgs models

Effective field theory at electroweak scale

Consider effective field theory (EFT) of Minimal Fundamental Partial Compositeness (MFPC): MFPC-EFT. Cacciapaglia, Gertov, Sannino, Thomsen, arXiv:1704.07845

 $\propto (\boldsymbol{y}_{f_1}^T \boldsymbol{y}_{f_2})_{ij} (\boldsymbol{y}_{f_3}^T \boldsymbol{y}_{f_4})_{kl}$

Flavour structure from fundamental Yukawa couplings.

Flavour analysis of MFPC

Sannino, PS, Straub, Thomsen, arXiv:1712.07646

- Consider parameters of MFPC-EFT relevant for flavour observables.
- Constrain parameter space by
 - SM fermion masses and CKM elements,
 - Electroweak scale observables,
 - Low-energy flavour observables.
- Make predictions for LFU observables $R_{K^{(*)}}$ and $R_{D^{(*)}}$.

Electroweak scale observables

Use MFPC-EFT at electroweak (EW) scale.

Most important constraints: ratios of Z partial widths (measured at LEP),

$$egin{aligned} R_{e} &= rac{\Gamma(Z o qar{q})}{\Gamma(Z o ear{e})}, \qquad R_{\mu} &= rac{\Gamma(Z o qar{q})}{\Gamma(Z o \muar{\mu})}, \qquad R_{ au} &= rac{\Gamma(Z o qar{q})}{\Gamma(Z o auar{ au})}, \ R_{ au} &= rac{\Gamma(Z o zar{q})}{\Gamma(Z o auar{ au})}, \ R_{b} &= rac{\Gamma(Z o bar{b})}{\Gamma(Z o qar{q})}, \qquad R_{c} &= rac{\Gamma(Z o car{c})}{\Gamma(Z o qar{q})}. \end{aligned}$$

Low-energy flavour observables

Match MFPC-EFT to weak effective Hamiltonian (WEH).

Meson-antimeson mixing

- lndirect *CP* violation in kaon mixing: ϵ_{κ} .
- Mixing-induced *CP* asymmetries in B_d and B_s systems: $S_{\psi \kappa_s}$ and $S_{\psi \phi}$.
- Mass differences in B_d and B_s systems: ΔM_d and ΔM_s .

Charged-current semi-leptonic decays (CKM elements and e-μ universality)

- ▶ **BR**($\pi^+ \rightarrow e\nu$), based on $d \rightarrow ue\nu$.
- ▶ $BR(K^+ \rightarrow \mu\nu)$, $BR(K^+ \rightarrow e\nu)/BR(K^+ \rightarrow \mu\nu)$, based on $s \rightarrow ue\nu$, $s \rightarrow u\mu\nu$.
- ▶ BR($B \rightarrow De\nu$), BR($B \rightarrow D\mu\nu$), based on $b \rightarrow ce\nu$, $b \rightarrow c\mu\nu$.
- Predictions for LFU observables R_D and R_{D*}.

Neutral-current semi-leptonic decays

Predictions for LFU observables R_K and R_{K*}.

Numerical method

Parameter scan challenging

37 parameters (1 for strong coupling scale, 22 for fundamental Yukawa couplings, 14 for Wilson coefficients of MFPC-EFT)

Strategy

To find viable parameter points satisfying all constraints:

- Step 1
 - Construct \(\chi_{mass,CKM}\) function for quark masses and CKM elements depending only on 19 parameters.
 - Numerically minimize $\chi^2_{\text{mass.CKM}}$ for 100 k random starting points.
 - Sample regions around local minima using Markov Chains from pypmc package to yield 1000 points for each minimum.

Yields 100 M points predicting correct quark masses and CKM elements.

- Step 2
 - Randomly choose remaining 18 parameters for each point.
 - Calculate EW scale and flavour observables using flavio code.

Results

- ϵ_{κ} provides very strong constraint, but can be satisfied by large number of parameter points.
- Tests of e-µ universality in charged-current decays are important constraints due to generic LFU violation from partial compositeness.
- Large deviation of $R_{D^{(*)}}$ from SM value is in conflict with Z partial widths (modified $Z\tau\tau$ coupling).

Results

Anomalies in rare B decays can be explained!

Outline

- Motivation: Flavour anomalies
- 2 Violation of lepton flavour universality in composite Higgs models
- 3 Flavour analysis of minimal fundamental partial compositeness
- 4 Summary

Summary

CHM with sizable degree of compositeness of left-handed muons can explain anomalies in rare B decays.

- Corresponds to new physics contriution to $C_9^{\mu} = -C_{10}^{\mu} < 0$.
- Predicts deviation in $B_s \overline{B}_s$ mixing.
- Correction to Fermi constant yields strongest constraint from EWPT if tree level Z couplings are protected by discrete symmetry.

Performed comprehensive numerical analysis of flavour and EW scale effects of MFPC model.

- Numerical method allows for scan of high dimensional parameter space.
- Strongest constraints from ϵ_K , but satisfied by large number of parameter points.
- Large deviation of $R_{D^{(*)}}$ from SM value is in conflict with Z partial widths.
- Anomalies in rare B decays can be explained.

Backup slides

*R*_{K*} predictions

 ϵ_{K}

Figure: Histogram showing the NP contribution to ϵ_{κ} for a representative subset of all points that feature the right masses and CKM elements, compared to the points among those that pass the experimental constraint. A positive NP contribution corresponds to constructive interference with the SM.

ΔM_d and ΔM_s

Figure: Predictions for ΔM_d and ΔM_s . Gray points are excluded by constraints other than $\Delta F = 2$. Blue points are allowed by all constraints.

$$S_{\psi K_s}$$
 and $S_{\psi \phi}$

Figure: Predictions for the mixing induced CP asymmetries in $B^0 \rightarrow J/\psi K_S$ and $B_s \rightarrow J/\psi \phi$, sensitive to the B^0 and B_s mixing phases. Gray points are excluded by constraints other than $\Delta F = 2$. Blue points are allowed by all constraints.

e- μ universality

Figure: Histogram showing distribution of predictions for two observables probing $e_{-\mu}$ universality violation in *Z* couplings for all points passing $\Delta F = 2$ constraints. "excluded by flavour" is excluded by charged-current decays imposed as constraints.

MFPC particle content

	Q	ū	ā	L	$\bar{\nu}$	ē	$\mathcal{F}_{\updownarrow}$	$ar{\mathcal{F}}_{\uparrow}$	$\bar{\mathcal{F}}_{\downarrow}$	$S_q S_l$
$Sp(N)_{TC}$	1	1	1	1	1	1	Ν	Ν	Ν	N N
$SU(3)_{C}$	3	3	3	1	1	1	1	1	1	3 1
$SU(2)_L$	2	1	1	2	1	1	2	1	1	1 1
$U(1)_{Y}$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	0	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{6}$ $\frac{1}{2}$
Ng	3 3	3	3 3	3	3	3	1	1	ī	3 3

Table: Quantum numbers of SM fields, TC fermions, and TC scalars in MFPC. The last line gives the number of generations N_g . All fermion fields are left-handed Weyl spinors.

Straub et al. [flav-io.github.io]

$m{b} ightarrow m{s} \, \mu \mu$ analysis

Global fits to data using open source code flavio, including the following observables:

- ► $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables CDF [public note 10894], LHCb [arXiv:1512.04442], ATLAS [CONF-2017-023], CMS [arXiv:1507.08126, PAS-BPH-15-008]
- $B_s \rightarrow \phi \mu^+ \mu^-$ angular observables

$$\blacktriangleright \ \mathcal{B}(\mathcal{B}^{0,\pm} \to \mathcal{K}^{*0,\pm} \mu^+ \mu^-)$$

- $\blacktriangleright \ \mathcal{B}(\mathbf{B}^{\mathbf{0},\pm}\to\mathbf{K}^{\mathbf{0},\pm}\mu^+\mu^-)$
- $\blacktriangleright \ \mathcal{B}(B_s \to \phi \mu^+ \mu^-)$
- ▶ $\mathcal{B}(B \to X_s \mu^+ \mu^-)$

LHCb [arXiv:1506.08777]

LHCb [arXiv:1403.8044, arXiv:1606.04731], CMS [arXiv:1507.08126], CDF [public note 10894]

LHCb [arXiv:1403.8044], CDF [public note 10894]

LHCb [arXiv:1506.08777], CDF [public note 10894]

BaBar [arXiv:1312.5364]

$b ightarrow s \, \mu \mu$ analysis

Not included:

- lepton-averaged observables: focus on new physics in $b o s \, \mu^+ \mu^-$
- ▶ $B \rightarrow K\mu^+\mu^-$ angular observables: only relevant in presence of scalar or tensor operators
- ▶ $B \rightarrow K^* \mu^+ \mu^-$ angular observables by Belle: unknown mixture of B^0 and B^{\pm}
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ by LHCb: large experimental uncertainties, central values not compatible with viable short-distance hypothesis

[arXiv:1503.07138], Meinel, van Dvk [arXiv:1603.02974]

Beaujean, Bobeth, Jahn,

Belle [arXiv:1612.05014]

[arXiv:1508.01526]

$b ightarrow s \, \mu \mu$ analysis

	standard	uncert.	2×FF u	ncert.	$2 \times \text{non-FF}$ uncert.		
Coeff.	best fit	pull	best fit	pull	best fit	pull	
$C_9^{\sf NP}$	-1.21	5.2 σ	-1.13	4.0 σ	-1.30	4.4 σ	
C_{10}^{NP}	+0.79	3.4 σ	+0.57	1.9 σ	+0.74	2.9 σ	
$C_9^{ m NP}=-C_{10}^{ m NP}$	-0.67	4.8 σ	-0.64	3.4 σ	-0.64	4.0 σ	
$C_9^{ m NP}=C_{10}^{ m NP}$	-0.30	1.3 σ	-0.46	1.8σ	-0.14	0.5σ	
C'_9	+0.19	0.9σ	+0.31	1.0σ	+0.36	1.5σ	
C'_{10}	-0.10	0.6σ	-0.10	0.4σ	-0.23	1.2σ	
$C_{9}^{\prime}=-C_{10}^{\prime}$	+0.08	0.8σ	+0.11	0.8σ	+0.17	1.4 σ	
$C_9^\prime=C_{10}^\prime$	+0.06	0.3σ	+0.11	0.4σ	-0.03	0.1σ	