Time-dependent CP asymmetries of $b \rightarrow s\gamma$ transitions at Belle II

J. Baudot, <u>S. Bilokin</u>, D. Cuesta, I. Ripp-Baudot, R. Rasheed IPHC Strasbourg, France

GDR-InF annual workshop, Arles

Scientific motivation

- Belle II @ SuperKEKB is the new e+e- facility at intensity frontier, which studies properties of rare B meson decays – b-factory
 - High-Lumi successor of
 Belle @ KEKB and BaBar @ PEP II
 - Rich physics program
 - Direct searches of BSM
 - Dark matter, axions, exotics ...
 - Indirect searches
 - B physics (CKM, EW penguins, radiative decays)
 - Charm physics
 - Tau physics
 - Quarkonium and QCD studies
- No New Physics (NP) particles have been discovered at the LHC yet
 - Importance of the indirect searches is rising
 - Belle II can reach beyond the energy frontier sensitivity
- Constructive complementarity & competition with LHC

Belle II at SuperKEKB

 Most of the data will be taken at the Y(4S) resonance

 $-E(e^{-}) = 7 \, GeV, \, E(e^{+}) = 4 \, GeV$

- Nano-beam scheme and doubling the beam current
 - Vertical beam size is 50nm
 - Higher beam background
- $\mathcal{L} = 8 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1} (\text{KEKB x } 40)$ Belle II TDR - arXiv:1011.0352

- Improved vertex resolution, PID, tracking, etc...
- High detection efficiency $\gamma, \pi^0, K^0_{S,L}$
- Detector commissioning has been started
 - **0.5 fb-1 collected** $\mathcal{L} = 5.5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- Almost full Belle II next year Plan to collect 50 ab⁻¹ by 2025

Introduction

- We are interested in time-dependent CP analysis of $b \to s \gamma$ transitions
 - In Standard Model no time-dependent CP violation (TDCPV) is expected due to its V-A structure and photon polarization
 - Sensitive to New Physics effects
- We are studying two channels:
 - $\qquad B^0 \to K^0_S \pi^0 \gamma$
 - BR: 9.5×10^{-6}

4

- These processes go through several resonances K^{*0} and higher K_1^0 , K_2^0 , ... etc, often called X_{sd}
 - $B^0 \to K^0_S \pi^0 \gamma$ goes through K*^o and X_{sd}
 - $B^0 \rightarrow K_S^0 \pi^+ \pi^- \gamma$ goes through X_{sd}, includes non-CP eigenstates

TDCPV measurement

• We are interested in time-dependent asymmetry:

$$A_f(t) = \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to \bar{f})}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to \bar{f})}$$

• This asymmetry can be parametrized as following:

$$A_f(t) = \mathbf{A}\cos(\Delta m \cdot t) + \mathbf{S}\sin(\Delta m \cdot t)$$

• At B factories we can measure only proper decay time difference Δt :

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 + \frac{q(S\sin(\Delta m\Delta t) + A\cos(\Delta m\Delta t))\right]$$

This measurement requires a precise vertexing and flavor tagging *q*, see next slide

Results by the previous experiments

8

 \cap

 \cap

arXiv:0807.3103 arXiv:1512.03579

	~ 0.48 ab ⁻¹	$B^0 \to K^0_S \pi^0 \gamma$	~ 0.42 ab ⁻¹
$S_{K^{*0}\gamma}$	$= -0.32^{+0.36}_{-0.33}$ (stat)	± 0.05 $S_{K^*\gamma}$	$= -0.03 \pm 0.29 \text{ (stat)} \pm 0.03$
$l_{K^{*0}\gamma}$	$= -0.20 \pm 0.24$ (sta	$(t) \pm 0.05$ $C_{K^*\gamma}$	$= -0.14 \pm 0.16 \text{ (stat)} \pm 0.03$
$K^0_S \pi^0 \gamma$	$= -0.10 \pm 0.31$ (stat)	± 0.07 $S_{K_{S}^{0}\pi^{0}\gamma}$	$= -0.78 \pm 0.59 \text{ (stat)} \pm 0.09$
$K^0_S \pi^0 \gamma$	$= -0.20 \pm 0.20(\text{stat})$	$\pm 0.06 \qquad C_{K_{S}^{0}\pi^{0}\gamma}$	$= -0.36 \pm 0.33 \text{ (stat)} \pm 0.04$
		5	

$$\begin{array}{ll} \sim \text{0.6 ab}^{\text{-1}} & B^0 \to K^0_S \pi^+ \pi^- \gamma & \sim \text{0.43 ab}^{\text{-1}} \\ \\ \mathcal{S}_{K^0_S \pi^+ \pi^- \gamma} = 0.09 \pm 0.27 \overset{+0.04}{_{-0.07}} & \mathcal{S}_{K^0_S \pi^+ \pi^- \gamma} = & 0.14 \pm 0.25 \pm 0.03, \\ \\ \mathcal{A}_{K^0_S \pi^+ \pi^- \gamma} = 0.05 \pm 0.18 \pm 0.06 & \mathcal{C}_{K^0_S \pi^+ \pi^- \gamma} = -0.39 \pm 0.20 \overset{+0.03}{_{-0.02}}. \end{array}$$

• The results of the previous b-factories, Belle and BaBar are statistically limited \rightarrow increase sensitivity ~x10 with Belle II

Reconstruction quality

Cut optimization

• Cut optimization is on-going:

 By optimization of cuts using Figure-Of-Merit in several steps we get 10% improvement on the final uncertainties

Reconstruction quality

• Using full Belle II simulation signal samples:

Fit of $B^0 \to K^0_S \pi^0 \gamma$

Using MC sample of L = 1 ab⁻¹, K* mass region:

- 4D unbinned likelihood fit gives the precision on TDCPV parameters A & S
- 2 background models and 1 signal model
- Continuum bkg shape, signal fraction, A and S are determined from the fit

MC numbers:

• N(signal) = 203

Fit results: N(signal) =220±18 $A = +0.03 \pm 0.19$ $S = +0.02 \pm 0.30$

Fit of $B^0 \to K^0_S \pi^+ \pi^- \gamma$

• Using MC sample of L = 1 ab⁻¹:

- 4D unbinned likelihood fit gives the precision on TDCPV parameters A & S
- 2 background models and 1 signal model
- Continuum bkg shape, signal fraction, A and S are determined from the fit

MC numbers:

$$N(total) = 6002$$

Preliminary systematic uncertainties

• We expect the following sources of systematics for $B^0 \to K_S^0 \pi^0 \gamma$:

		ΔS	ΔA
	Physics parameters	0.0066	800.0
>	Flavor tagging	0.005	0.002
	Fitting procedure	0.015	0.016
	Signal and Bkg fraction	0.00506	0.00680
	Resolution function	0.0016	0.0015
	SVT alignment	0.006	0.004
	CP from BB bkg	0.008	0.002
	Tag Side Interference	0.001	0.015
	Total	0.02	0.024

Winne

- In the fitting algorithm we fix many parameters, which automatically converts to the systematic uncertainty
- The signal Δt resolution function parameters have the largest contribution \rightarrow need to reparametrize it

Preliminary prospects for $B^0 \to K^0_S \pi^0 \gamma$

• 200 Toy MC experiments, **K*0 mass region**:

The statistical error of full Belle II dataset is on the level of systematics

*Belle and BaBar errors are for S parameter

Preliminary prospects for $B^0 \to K_S^0 \pi^+ \pi^- \gamma$

• 200 Toy MC experiments:

Non CP eigenstates can dilute the precision on S by ~20%

*Belle and BaBar errors are for S parameter

Summary

- Radiative processes, like $b \to s \gamma$, are sensitive probes for New Physics
 - The e+e- collisions at Belle II is an excellent environment to study radiative processes
- For $B^0 \to K_S^0 \pi^+ \pi^- \gamma$ statistical uncertainty on $\delta S \sim 0.043$ is reachable
- Another channel $B^0 \to K^0_S \pi^0 \gamma$ gives $\delta S \sim 0.045$, it is easier to interpret
- Belle II will provide enough data to have statistical uncertainties comparable to the systematic ones for the radiative TDCPV studies
- Future work:
 - Early phase III measurements: rediscovery of the processes, flavor tag systematics, Δt resolution measurements
 - Intrerpretation of the results
- PhD thesis for Oct 2019 to work on Lepton Flavor Universality

Thank you!

Delta T

• Change of S and A parameters and influence of experimental resolution

Initial SuperKEKB planning

Belle II parameters

Component	Type Configuration		Readout	Performance	
Beam pipe Beryllium		Cylindrical, inner radius 10 mm,			
	double-wall	$10~\mu{\rm m}$ Au, 0.6 mm Be,			
		1 mm coolant (paraffin), 0.4 mm Be			
PXD Silicon pixel		Sensor size: 15×100 (120) mm ²	$10 \mathrm{M}$	impact parameter resolution	
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$	
		2 layers: 8 (12) sensors		(PXD and SVD)	
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k		
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$			
		4 layers: $16/30/56/85$ sensors			
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu \text{m}, \ \sigma_z = 2 \ \text{mm}$	
	drift chamber	m r=16 - $ m 112~cm$		$\sigma_{p_t}/p_t = \sqrt{(0.2\%p_t)^2 + (0.3\%/\beta)^2}$	
		- 83 $\leq z \leq$ 159 cm		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)	
				$\sigma_{dE/dx} = 5\%$	
TOP	RICH with	16 segments in ϕ at $r \sim 120 \text{ cm}$	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \mathrm{ps}$	
	quartz radiator	275 cm long, $2 cm$ thick quartz bars		K/π separation :	
		with 4x4 channel MCP PMTs		efficiency > 99% at $< 0.5\%$ pion	
				fake prob. for $B \to \rho \gamma$ decays	
ARICH	RICH with	4 cm thick focusing radiator	78 k	$N_{p.e.} \sim 13$	
	aerogel radiator	and HAPD photodetectors		K/π separation at 4 GeV/c:	
		for the forward end-cap		efficiency 96% at 1% pion fake prob.	
ECL	CsI(Tl)	Barrel: $r = 125 - 162$ cm	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[4]{E}} \oplus 1.2\%$	
	(Towered structure)	End-cap: $z =$	1152 (F)	$\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$	
		-102 cm and +196 cm	960 (B)	(E in GeV)	
KLM	barrel: RPCs	14 layers (5 cm Fe + 4 cm gap)	θ : 16 k, ϕ : 16 k	$\Delta \phi = \Delta \theta = 20 \text{ mradian for } K_L$	
		2 RPCs in each gap		$\sim 1~\%$ hadron fake for muons	
	end-caps:	14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$	$17 \mathrm{k}$	$\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$	
	scintillator strips	read out with WLS and G-APDs		$\sigma_p/p = 18\%$ for 1 GeV/c K_L	

Belle II vertex detector

