

RADIATIVE B DECAYS INTO ORBITALLY EXCITED MESONS AT LHCB

Boris Quintana

LPC Clermont-Ferrand

RADIATIVE DECAYS

Photons in $b \rightarrow s\gamma$ (FCNC process) are predominantly left-handed in the SM, since the W boson couples to left-handed quarks. New particles could enhance the right-handed contribution.

First observation at CLEO (1993) in $B_d \to K^* \, \gamma$

Physical observables :

Branching Ratios :

$$3R(B_d \to K^* \gamma) = \frac{N(B_d \to K^* \gamma)}{N(B_d)}$$

CP Asymetries :

$$A_{CP} = \frac{N(B_d \to K^* \gamma) - N(\overline{B}_d \to \overline{K}^* \gamma)}{N(B_d \to K^* \gamma) + N(\overline{B}_d \to \overline{K}^* \gamma)}$$

Photon polarisation : angular analysis / Time dependent analysis CKM Matrix elements : $|V_{td}|$, $|V_{ts}|$

MOTIVATIONS

<u>A simultaneous analysis of B⁰->K $\pi\gamma$, B_s->KK γ (and $\Lambda_{\rm b}$ ->pK γ) :</u>

- Aim to improve $K^*\gamma / \Phi \gamma$ models with better understanding of NR and high-mass contamination •
- Improve inclusive BR($B \rightarrow X_s \gamma$) in terms of sum over exclusives •

Already observed decay modes :

- $B_{vis} = 28.9 \pm 1.0 \times 10^{-6}$: Cleo, Babar, Belle, LHCb • $B^0 \rightarrow (K^{*0} \rightarrow K^+ \pi^-)\gamma$:
- $B_s \rightarrow (\phi \rightarrow K^+ K^-) \gamma$: $B_{vis} = 18 \pm 2 \times 10^{-6}$: Belle, LHCb
- $B^0 \rightarrow (K^{*2} \rightarrow K^+ \pi^-)\gamma$: $B_{vis} = 4.1 \pm 0.8 \times 10^{-6}$: Babar (5.8 σ), Belle(3 σ), Cleo
- Some limits on other modes :
- $B^0 \rightarrow (K^* (1410) \rightarrow K^+ \pi^-)\gamma$: $B_{vis} < 9 \times 10^{-6}$: Belle
- $B^0 \rightarrow (K^+ \pi^-) NR \gamma B_{vis} < 2.6 \text{ x} 10^{-6}$: Belle $(m_{K\pi} \text{ in } [1.25, 1.60] \text{ GeV}/c^2)$

K*(1680)

K₃(1710)

MOTIVATIONS

<u>A simultaneous analysis of B⁰->K $\pi\gamma$, B_s->KK γ (and $\Lambda_{\rm b}$ ->pK γ) :</u>

- Aim to improve $K^*\gamma / \Phi \gamma$ models with better understanding of NR and high-mass contamination •
- Improve inclusive BR(B \rightarrow Xs γ) in terms of sum over exclusives •

Already observed decay modes :

- $B^0 \rightarrow (K^{*0} \rightarrow K^+ \pi^-)\gamma$:
- $B^0 \rightarrow (K^{*2} \rightarrow K^+ \pi^-)\gamma$:
- $B_s \rightarrow (\phi \rightarrow K^+ K^-) \gamma$: $B_{vis} = 18 \pm 2 \times 10^{-6}$: Belle, LHCb

 $B_{vis} = 28.9 \pm 1.0 \times 10^{-6}$: Cleo, Babar, Belle, LHCb $B_{vis} = 4.1 \pm 0.8 \times 10^{-6}$: Babar (5.8 σ), Belle(3 σ), Cleo

Some limits on other modes :

- $B^0 \rightarrow (K^* (1410) \rightarrow K^+ \pi^-)\gamma$: $B_{vis} < 9 \times 10^{-6}$: Belle
- $B^0 \rightarrow (K^+ \pi^-) NR \gamma B_{vis} < 2.6 \text{ x} 10^{-6}$: Belle $(m_{K\pi} \text{ in } [1.25, 1.60] \text{ GeV}/c^2)$

ANALYSIS SCHEME

 $K\pi\gamma$, KKγ and pKγ final states can contribute to each other if one or two tracks are mis-identified (crossfeed) : \rightarrow Simultaneous analysis !

We gather every (2tracks+1 high_PT photon) event and reconstruct them as $K\pi\gamma$, $KK\gamma$ and $pK\gamma$ by applying hadron masses to the tracks :

We also apply an additional set of cuts to reduce background from merged π^0 and to veto the charm decays :

- $m(h\gamma_{\to \pi 0}) > 2000 \text{ MeV}/c^2$
- IsPhoton (γ / π^0) > 0,6

PID SELECTION

To identify the tracks and build exclusive $K\pi\gamma$, $KK\gamma$ and $pK\gamma$ samples :

Classify $h^+ h^- \gamma$ candidates according to largest $h_ProbNNx_i$ ($x_i = \pi, K, p$)

• h_ProbNNx_i > ProbNNx_j (h) for all $x_j \neq x_i$

To optimise the selection in terms of signal significance :

h1_ProbNNx_i > cut1
h2 ProbNNx₂ > cut2

FoM(cut1,cut2) = $\frac{S}{\sqrt{S+B}}$

COMBINATORIAL BACKGROUND

After the PID selection a large amount of combinatorial background remains :

Use of Multivariate Analysis classifier trained using :

- Signal Monte Carlo simulations : $B^0 \rightarrow K^*(892)\gamma$, $\underline{B}^0 \rightarrow K^{*2}(1430)\gamma$, $B^0 \rightarrow K^1(1410)\gamma$, $B_s \rightarrow \phi \gamma$, $\underline{B_s} \rightarrow f'2 (1525)\gamma$ $\Lambda_b \rightarrow \Lambda^*(1520/1670/1820/1830)\gamma$
- Events in the Right Handed Side Band

BDT VARIABLES

Final set :

- B min χ_{IP}^{2}
- B pseudorapidity
- B momentum
- B Flight Distance
- B vertex isolation (Smallest Δx^2)
- χ_{IP}^{2} of the (hh) resonance
- IP of the resonance
- Momentum of the resonance
- IP of the tracks
- Transverse momenta of the tracks

BDT PERFORMANCES

Κπγ

The best BDT are the ones trained on K^{*2}/K^1 and f'2

The cut to the BDT output is chosen to optimise the signal significance.

2012 massfit (preliminary) :

External constraints : $(m_B - m_{Bs}) \& (m_B - m_{\Lambda b})$

Model description :

2012 massfit (preliminary) :

External constraints : $(m_B - m_{Bs}) \& (m_B - m_{\Lambda b})$

Total yields expected Run I + Run II : ~35k

2012 massfit (preliminary) :

External constraints : $(m_B - m_{Bs}) \& (m_B - m_{\Lambda b})$

Total yields expected Run I + Run II : ~40k

PROSPECTS

Preliminary look to the data run1+run2 ($2.7 + 1.0 \text{ fb}^{-1}$):

- Clear D-wave contribution in the $K_{2}^{*}(K\pi)$ and $f'_{2}(KK)$ region
- Expecting a first observation of $B_s \rightarrow f'_2(1525) \gamma$ and $B^0 \rightarrow K_1(1410) \gamma$
- Fit 2D plane sWeighted ?
- 3D Fit m(hh γ) x m(hh) x cos(Θ_h) ?

BONUS : $B \rightarrow K_{S} HHG$

Started to select $(Khh)^0\gamma$ in the same fashion :

Amplitude analysis ...

CPV ... Photon Polarisation ...

<u>After a tight selection on Run I + Run II :</u>

THANK YOU !

CONCLUSION AND PROSPECTS

-We achieved the selection of a high amount of radiative decay events (Run I + Run II) -We'll be eventually able to measure new modes' BR -B_s \rightarrow f'₂(1525) γ would be the second b \rightarrow s γ in B_s decays

- Need to develop the 2D fit to extract BR

CONCLUSION AND PROSPECTS

- -We achieved the selection of a high amount of radiative decay events (Run I + Run II)
- -We'll be eventually able to measure new modes' BR
- $-B_s \rightarrow f'_2(1525) \gamma$ would be the second b $\rightarrow s\gamma$ in B_s decays

- Need to develop the 2D fit to extract BR

- Start writing the thesis ...

BACK UP AND STUFF...

 $\frac{19}{\text{Boris Quintana - Study of B} \rightarrow (\text{hh}) \gamma \text{ decays at LHCb}}$

PID FOM FOR KPI SELECTION

2012 massfit (preliminary) :

External constraints : $(m_B - m_{Bs}) \& (m_B - m_{\Lambda b})$

Total yields expected Run I + Run II :

 $K\pi\gamma$: ~380k

KK γ : ~40k

PK γ : ~45k

PID FOM FOR KPI SELECTION

Mis-ID contaminations/rate/efficiencies?

FITTING THE HHY MASS

- Combinatorial BKG: Exponential (shape and N free)
- <u>Inclusive partially reconstruced</u> : B -> hh π^0/γ + X (X > 2)
- Argus (free, $\mu = m_B 2 m_{\pi}$) convoluted with Asym. Gaussian($\mu = 0, \sigma = \sigma_{sig}$) (CB convo ?!)

Boris (

PARTIALLY RECONSTRUCTED

<u>Partially reconstruced</u> : B -> $(hh\pi)_{res} \gamma$

Shape : Argus ($\mu = m_B - m_{\pi}$, fixed on MC, free yield) convoluted with an

Asymetric Gaussian(μ =0, σ = σ _{sig})

- For every shape we perform an extended maximum likelihood unbinned fit.
- The MC used is reweighted to propagate the overall PID efficiencies, and the BDT selection is applied.

Π^0/Γ MIS-ID CONTRIBUTIONS

Shape : Asym bifurcated CB, shape and normalization fixed.

Note : the contamination are lower in 2011, seems to be due to the BDT

Boris (

TO DO : request better MC with new DecFile

25

CHARGED MIS-ID

Shape : Asym bifurcated CB, shape and normalization fixed.

Note : normalisation wrt simult. fit :

 $\frac{N(K\pi\gamma \rightarrow KK\gamma)}{N(K\pi\gamma)} \neq Contamination$

Contribution	Contamination		
KK -> KPI	2,4 %	2,6 %	
PK -> PIK	9 %	14,2 %	
PK -> KPI	0,89 %	1,2 %	
KPI -> PIK	0,22 %	0,25 %	
KPI -> KK	2,1 %	3,2 %	
РК -> КК	5,8 %	7,4 %	
KPI -> KP	13 %	9 %	
KPI -> PK	1 %	0,8 %	
КК -> РК	1,5 %	1,2 %	

LHCB DETECTOR

 $\gamma \rightarrow \pi^0$ Mis-identification :

Peaks at the signal mass !

IsPhoton > 0,6 : ~80% background rejection Contamination : 2-5%

SIGNAL AND BACKGROUNDS

SIGNAL AND BACKGROUNDS

Signal (and Physical background) :

- final states particles are correctly identified

 $B_d \rightarrow K^* \gamma$ $B_s \rightarrow K^* \gamma$

PV

SV

h⁺

Combinatorial background :

Final state particles don't all come from the (same) B decay

 γ/π^0 Mis-identification :

 $\pi^0 \rightarrow \gamma \gamma$ looks like a single γ in the ECAL :

We use a Neural Network trained to distinguish between the two :

PV

Charged tracks Mis-identification :

Peaks under the signal !

Contamination :

- 0,01 % for double mis-id
- From 1 to 10% for simple Mis-ID

OPTIMAL CUT

BDT EFFICIENCIES

Training Sample	BDTCut	Efficiency (K*/ φ)	Efficiency (K1+K*2/ f [*] 2)	BKG rejec.
Κ*γ_2011	> 0,04	94,2 %	??	88,8 %
Κ*γ_2012	> 0	91,3 %	79,6 %	93,3 %
(K*+K*2+K1)γ_2012	>0,01	89,6 %	88,3 %	93,8 %
(K*2+K1)γ_2012	>-0,01	88,5 %	88,7 %	93,8 %
φγ_2011	> 0,13	93,4 %	??	93,7 %
φγ_2012	> 0,07	92 %	43,6 %	96,5 %
(φ + f'2) γ_2012	> 0,07	89 %	76,3 %	96 %
f'2 γ_2012	> 0,05	85 %	81,3 %	95,8 %
(pK)γ_2011	> 0,1	83,3 %	х	94,5 %
(pK)γ_2012	> 0,07	79,2 %	Х	97,6 %

The Vertex Locator :

Bunch crossing rate : 40M/s pp collision per crossing : ~2,57

The Tracking system

Magnetic field : 3,6Tm

-> measure momenta : $R = \frac{mv}{qB}$

 $\frac{38}{\text{Boris Quintana - Study of B} \rightarrow (hh) \gamma \text{ decays at LHCb}}$

LHCB

RICH detectors

Boris Quintana - Study of $B \rightarrow (hh) \gamma$ decays at LHCb

1 .

Calorimeters :

Resolution on B mass in radiatives : 80-100MeV

$$\pi^0 \to \gamma\gamma$$

LHCB

Muon trackers :

\underline{B} -> mumu/ \underline{B} -> K*mumu

Note : normalisation wrt simult. fit :

 $\frac{N(K\pi\gamma \rightarrow KK\gamma)}{N(K\pi\gamma)} \neq Contamination$

Contribution Contamination			ation
	KK -> KPI	2,4 %	2,6 %
XE	PK -> PIK	9 %	14,2 %
	PK -> KPI	0,89 %	1,2 %
	KPI -> PIK	0,22 %	0,25 %
	KPI -> KK	2,1 %	3,2 %
	РК -> КК	5,8 %	7,4 %
	KPI -> KP	13 %	9 %
	KPI -> PK	1 %	0,8 %
	КК -> РК	14,5 %	14,2 %

MC

Reweighting

- Efficiency studies ?
- Contamination computation ?

2D MASS FIT

<u>Make use of the helicity angle</u>

 $Cos^{2}(\Theta_{H})$ for S- waves : π^{0} backgrounds Sin²(Θ_{H}) for P-waves : K*(892) γ , K1(1410) γ , ϕ (1020) γ Cos²(Θ_{H}).sin²(Θ_{H}) for D-waves : K* 2 (1430) γ , f' 2 (1525)

Prefilmenter foortistreventerun1+run2 (2.7 + 1.0 fb⁻¹):

- Clear D-wave contribution in the $K_{2}^{*}(K\pi)$ and $f_{2}^{'}(KK)$ region
- Expecting a first observation of $B_s \rightarrow f'_{2}$ (1525) γ and $B^0 \rightarrow K_1(1410) \gamma$

PRESELECTION

- Standard Vγ selection with :
- a release of the h⁺h⁻ mass window (below the charm threshold)
- no cut on the helicity
- $m(h \gamma_{\to \pi 0}) > 2000 \text{ MeV/c}^2$
- List of cuts :

$h_MINIPCHI2 > 16$

max(h1_PT,h2_PT) > 1200 min(h1_PT,h2_PT) > 500 h_P > 500 h_P < 100000 h1_eta > 1.5 h1_eta1 < 5.0 res_ENDVERTEX_CHI2 < 9 h_TRACK_CHI2NDOF < 3</pre>

B_PT>2000 B_IPCHI2_OWNPV<9.0 gamma_CL > 0.2 gamma_PP_IsPhoton>0.6 gamma_PT > 3000

$B_M01 < 1850~(<\!\!3000~for~pK\gamma$)

h_TRACK_GhostProb < 0.4

 $B_DiraAngle < 0.06$

 $\frac{45}{\text{Boris Quintana - Status of B} \rightarrow (hh) \gamma \text{ analysis}}$

PID SELECTION

- In order to reduce the cross feeds and build exclusive samples the following cut is used :
- probNNh_i (h) > xh_i & probNNh_i (h) > probNNh_j (h) for all $h_j \neq h_i$ (h_i = π ,K,p)
- <u>Optimisation : Scan (xh₁, xh₂) cut values</u>
- The corresponding efficiency of each (h₁h₂) to be reconstructed as (kpi), (kk), (pk) etc... is extracted from calibration samples using nTracks-reweighted MC samples and the PIDCalib tool.

1 sample / possible reconstruction (including misID kpi->kk, etc...) is build using truthmatching

- MC used (Sim8 2011 / 2012):
- $B_d \rightarrow K^*(892) \gamma$
- $B_s \rightarrow \phi(1020) \gamma$
- > Λ_b -> $\Lambda^*(1520/1670/1820/1830) \gamma$
- preselection and truthmatching applied on MC
- > PIDCalib settings :
- Custom 3D binning in {nTracks(5), PT(8), ETA(8)} based on MC distributions
- V2 ProbNN variables

 $\frac{46}{\text{Boris Quintana}}$ - Status of B \rightarrow (hh) γ analysis

PID FOM

•

▶ The FoM computed for each (x_{h1}, x_{h2}) cut values is : FoM = S/(√S+B)
 ▶ With :

• $S = L * 2* \sigma(bb) * f_{b \to (B0/Bs/\Lambda B)} * BR(B \to hh\gamma) * \epsilon_{MC} * \epsilon_{presel} * \epsilon_{PID} (x_{h1}, x_{h2})$

assuming
$$BR_{vis}(B \rightarrow K\pi\gamma) = BR(B \rightarrow K^*(892)\gamma) / 0,65$$

 $BR_{vis}(B \rightarrow KK\gamma) = BR(B \rightarrow phi\gamma) / 0,30$

From preliminary fit

 $BR_{vis}(B \rightarrow pK\gamma) = 3.39 \ 10^{-5}$ (from Vicente's thesis)

 \triangleright ϵ_{PID} is taken as the mean of the PIDCalib eff in the reference sample

 $\mathbf{B} = \sum_{equal}^{cross} \mathbf{L} * 2 * \sigma(bb) * \mathbf{fb}_{\rightarrow(B0/Bs/\Lambda B)} * \mathbf{BR}(\mathbf{B} \rightarrow [\mathbf{hh}]_{trueID} \gamma) * \varepsilon_{MC} * \varepsilon_{presel} * \varepsilon_{misID} (\mathbf{x}_{h1}, \mathbf{x}_{h2})$

► This FoM has been drawn for a scan performed by steps of 0,05 in ProbNN

► and for each final state/year/magnet polarity

 $\frac{47}{\text{Boris Quintana - Status of B} \rightarrow (h\underline{h}) \gamma \text{ analysis}}$

PID FOM FOR KPI SELECTION (2012, MAGDOWN)

PID FOM FOR KK SELECTION (2012, MAGDOWN)

¥_				
Ź_				
<u>व</u> 0.9				
0.0		1820PKTOKK	0.151427	0.097086
		1830PKTOKK	0.160732	<u> </u>
0.7				16
Et Same				11
and the second s				38
0.6				
500 - 1				00
A				30
HAN				
				21
0.4				54
				32
0.0	E <u>I I I </u>			
A State	0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.91	1	20
0.2		o Other	Cuts	30
			11111	IIII

PID FOM FOR PK SELECTION (2012, MAGDOWN)

	Final State	Cut h1	Cut h2	Eff for the signal
The Fol	Κπγ	ProbNNK > 0,1	ProbNNpi > 0,1	83 %
	ΚΚγ	ProbNNK > 0,3	ProbNNK > 0,3	73%
	рКү	ProbNNp > 0,05	ProbNNK > 0,05	60%

Errors to be computed...

The next step is to train a Multivariate selection to reduce combinatorial contamination

Signal samples:

```
MC used for \mathbf{K}\pi \gamma:

\mathbf{B}^{0} \rightarrow (\mathbf{K}^{*}(892) \rightarrow \mathbf{K}\pi)\gamma (2011/12)

\mathbf{B}^{0} \rightarrow (\mathbf{K}^{*}_{2}(1430) \rightarrow \mathbf{K}\pi)\gamma (2012)

\mathbf{B}^{0} \rightarrow (\mathbf{K}_{1}(1410) \rightarrow \mathbf{K}\pi)\gamma (2012)
```

```
MC used for KK \gamma:

B_s \rightarrow (\phi \rightarrow K K) \gamma (2011/2012)

B_s \rightarrow (f'_2 (1525) \rightarrow K K) \gamma (2011)
```

MC used for KK γ : $\Lambda_b \rightarrow (\Lambda^*(1520) \rightarrow p \text{ K})\gamma$ $\Lambda_b \rightarrow (\Lambda^*(1670) \rightarrow p \text{ K})\gamma$ $\Lambda_b \rightarrow (\Lambda^*(1820) \rightarrow p \text{ K})\gamma$ $\Lambda_b \rightarrow (\Lambda^*(1830) \rightarrow p \text{ K})\gamma$

We train one MVA for each year

All the MC samples are reweighted on nTracks & PIDCalib_eff

 $\frac{52}{\text{Boris Quintana - Status of B} \rightarrow (\text{hh}) \gamma \text{ analysis}}$

	Sample	MC Signal	SB	SB (no PID cut)
BK	Κπγ_2011	107544	6540	15999
S	Κπγ_2012	29340	30970	75291
	ΚΚγ_2011	84080	460	3421
	ΚΚγ_2012	30208	1815	163309
	рКү_2011	40249	384	7707
	рКү_2012	45344	1988	40429

raining...

Since the number of events in the Side Band is quite low for KK γ and pK γ samples after the PID cut, we choose to train on a SB without this cut.

We first tested this for $K\pi\gamma$, by comparing two MVA trained on each of the SB

MVA BUILDING

- Different algorithms and settings have been tested (on $K\pi\gamma$):
- Best algorithm : BDT (AdaBoost)
- Best Settings : Ntrees=800
 - MaxDepth=3
 - minNodSize=2,5%
 - nCuts=200
 - AdaBoost $\beta=1$
 - Samples have been splitted in 2 according to (evtNumber%2=0), each subsample being tested on the other one.
- Starting from a set of 40 variables, the minimum set has been chosen removing variables one by one according to their rank during the training.
- We end up with 13 variables. Removing any one more seems to worsen significantly the performances (RO AUC).

54 Boris Quintana - Status of B → (hh) γ analysis

BDT VARIABLES

<u>Final set</u>

- B min χ_{IP}^2
- B pseudorapidity
- B momentum
- B Flight Distance
- **B** vertex isolation (Smallest Δx^2
- $\chi_{\rm IP}^2$ of the (hh) resonance
- IP of the resonance
- Momentum of the resonance
- IP of the tracks
- Transverse momenta of the track

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

OVERTRAINING TESTS

TMVA overtraining check for classifier: Final3_BDT13_1_2011_all_odd

TMVA overtraining check for classifier: Final3_BDT13_4_2012_all_odd

The variable set and settings optimised on $K\pi\gamma$ are used to train BDT on the two other modes :

OPTIMAL CUT

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

PID FOM

The FoM computed for each
$$(x_{h1}, x_{h2})$$
 cut values is : FoM = $\frac{S}{\sqrt{S+B}}$
With :

$$S = L * 2 * \sigma(bb) * f_{b \to (B_0/B_s/\Lambda_b)} * BR(B \to hh\gamma) * \epsilon_{MC} * \epsilon_{presel} * \epsilon_{PID} (x_{h1}, x_{h2})$$

$$\mathbf{B} = \sum_{equal}^{cross} \mathbf{L} * 2 * \sigma(bb) * \mathbf{fb}_{\rightarrow(B_0/B_s/\Lambda b)} * \mathbf{BR}(\mathbf{B} \rightarrow [\mathbf{hh}]_{trueID} \gamma) * \varepsilon_{MC} * \varepsilon_{presel} * \varepsilon_{misID} (\mathbf{x}_{h1}, \mathbf{x}_{h2})$$

This FoM has been drawn for a scan performed by steps of 0,05 in ProbNN. The $\varepsilon_{\text{PID}}(x_{h1}, x_{h2})$ is taken from calibration data.

BDT EFFICIENCIES

Training Sample	BDTCut	Efficiency (K*/ φ)	Efficiency (K1+K*2/ f²2)	BKG rejec. (SB in test samples)	BKG rejec. (on SB after PID cut)		
	Κπγ						
Κ*γ_2011	> 0,04	94,2 %	??	88,8 %	89,2 %		
Κ*γ_2012	> 0	91,3 %	79,6 %	93,3 %	94 %		
(K*+K*2+K1)γ_2012	>0,01	89,6 %	88,3 %	93,8 %	95,6%		
(K*2+K1)γ_2012	>-0,01	88,5 %	88,7 %	93,8 %	95,6 %		
ΚΚγ							
φγ_2011	> 0,13	93,4 %	??	93,7 %	93,1 %		
φγ_2012	> 0,07	92 %	43,6 %	96,5 %	95,6 %		
(φ + f'2) γ_2012	> 0,07	89 %	76,3 %	96 %	95,6 %		
f'2 γ_2012	> 0,05	85 %	81,3 %	95,8 %	95,6 %		
<u>ΡΚγ</u>							
(pK)γ_2011	> 0,1	83,3 %	х	94,5 %	92,3 %		
(pK)γ_2012	> 0,07	79,2 %	х	97,6 %	94,8 %		

*N*e see that :

BDT trained with only K* / ϕ MC samples gives a bad efficiency for the modes we are willing to see (43 % for f'₂ γ , 79% for K₁/K*₂ γ)

• Training on a SB with no cuts on PID gives a good background rejection on SB after PID cut

FITTING THE HHY MASS

- Combinatorial BKG: Exponential (shape and N free)
- <u>Inclusive partially reconstruced</u> : B -> hh π^0/γ + X (X > 2)
- Argus (free, $\mu = m_B 2 m_{\pi}$) convoluted with Asym. Gaussian($\mu = 0, \sigma = \sigma_{sig}$) (CB convo ?!)

61Boris Quintana - Status of B \rightarrow (hh) γ analysis

PARTIALLY RECONSTRUCTED

- <u>Partially reconstruced</u> : B -> $(hh\pi)_{res} \gamma$
- Shape : Argus ($\mu = m_B m_{\pi}$, fixed on MC, free yield) convoluted with an

Asymetric Gaussian($\mu=0, \sigma=\sigma_{sig}$)

For every shape we perform an extended maximum likelihood unbinned fit.

• The MC used is reweighted to propagate the overall PID efficiencies, and the BDT

TO DO Study $Mn(-> \gamma \gamma)$, would be Argus, shape and yields fixed

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

Π^0/Γ MIS-ID CONTRIBUTIONS

Note : the contamination are lower in 2011, seems to be due to the BDT

TO DO : request better MC with new DecFile

63 Boris Quintana - Status of $B \rightarrow$ (hh) γ analysis

Note : normalisation wrt simult. fit :

 $\frac{N(K\pi\gamma \rightarrow KK\gamma)}{N(K\pi\gamma)} \neq Contamination$

Contribution Contamination			ation
	KK -> KPI	2,4 %	2,6 %
XE	PK -> PIK	9 %	14,2 %
	PK -> KPI	0,89 %	1,2 %
	KPI -> PIK	0,22 %	0,25 %
	KPI -> KK	2,1 %	3,2 %
	РК -> КК	5,8 %	7,4 %
	KPI -> KP	13 %	9 %
	KPI -> PK	1 %	0,8 %
	КК -> РК	14,5 %	14,2 %

SIMULTANEOUS FIT

RUN 2 ANALYSIS

All the requested 2015/6 MC samples for kpi and kk are (almost) here.

PID Calib efficiency tables have been generated.

BDT for Run 2 with new isolation variables will be soon developped

Run 2 approximated yields :

Work is starting to apply a similar analysis procedure for K_shhγ run1+run2..

$\frac{66}{\text{Boris Quintana}}$ Boris Quintana - Status of B \rightarrow (hh) γ analysis

BACK UP

SIGNAL AND BKG SHAPES

• For every shape we perform an extended maximum likelihood unbinned fit.

• The MC used is reweighted to propagate the overall PID efficiencies, and the BDT

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

SIMULTANEOUS FIT

2012 massfit

External constraints : $(m_B - m_{Bs}) \& (m_B - m_{\Lambda b})$

Run 1 selection OK, few crosschecks left for the PID and MVA studies Run 1 Yields according to prelimary fit :

 $B^0 \rightarrow (K^* \rightarrow K \pi) \gamma : \sim 38500$ ► $B_s \rightarrow (\phi \rightarrow K K) \gamma$: ~6000 $\Lambda_{\rm b} \rightarrow \Lambda^* \gamma$: ~6300

Next steps:

Selection run2: MC production ongoing

Still need to train BDT for 2011 with $f'2 / K_{res}$ MC

Background studies : ongoing

BDT ON K1(1410)/K2(1430)

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

BDT ON F`2(1525)

BDT training MC	cut	FoM	Sig Eff	F`2 eff	Rej_SB	Rej_Filtere dSB	
Only f ²	>0,05	50	~81,3 %	~81,3 %	~95,8 %	~95,6 %	
Mix f ² /phi	>0,07	53,3	~84 %	~76,3 %	~96 %	~95,6 %	
Only phi	>0,07	58,6	~92 %	~43,6 %	~96	~95,6 %	
10 ³ Image: State Dev Image: Sta							

In the end we choose to use the BDT trained on Mix f'2/phi
BDT EFFICIENCY

Sample	BDTCut	Signal efficiency	Background rejec. (Test Samples)	Background rejec. (filtered SB)
Κπγ_2011	BDToutput > 0,04	94,2 %	88,8 %	89,2 %
ΚΚγ_2011	BDToutput > 0,13	93,4 %	93,7 %	93,1 %
рКү_2011	BDToutput > 0,1	83,3 %	94,5 %	92,3 %
Κπγ_2012	BDToutput > 0	91,3 %	93,3 %	94 %
ΚΚγ_2012	BDToutput > 0,07	92 %	96,5 %	95,6 %
рКү_2012	BDToutput > 0,07	79,2 %	97,6 %	94,8 %

<u>Bad efficiencies on Bs->K*2/K1 γ, Bs->f 2γ :</u>

- efficiency of the BDT trained with Bs-> $\phi \gamma$ MC on Bs->f 2γ MC : ~44% !
- equivalent for Bd \rightarrow k1 γ : ~80%
- -> Train other BDTs with Mix of resonant states, and also only on f'2 / K1

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

NTRACKS REWEIGHTING

distributions :

Weights computed comparing DVC substraated Data (nucliminar fit) and MC

- P & Eta well reproduced in MC, and not impacted by nTracks reweighting

Some variables are highly correlated, yet seem necessary to keep good performances... According to TMVA, BDT works fine with correlated variables...

Correlation Matrix (background)

Correlation Matrix (signal)

STRIPPING & PRESEL CUTS

h_MINIPCHI2 > 16 B_M01	1 < 1850 Kpi)	B_M01 < 1850	B M01 < 3000
(1.1 DT + 2 DT) > 1200	Kni)		D_1001 < 5000
$\max(n1_P1, n2_P1) > 1200$ // D0(K	(xpi)	// D0(KK)	
min(h1_PT,h2_PT) > 500		B_M02_Subst2_gamma2pi0>2000	
h_P > 500 B_M02 (& K*+	2_Subst2_gamma2pi0 >2000 //D+(K+pi0) +)	//D+(K+pi0) (& K*+)	
h_P < 100000		B_M12_Subst2_gamma2pi0 >2000	
h1_eta > 1.5 B_M12	2_Subst2_gamma2pi0>2000	// D-(K-pi0) (& K*-)	
h1_eta1+" < 5.0 // D-(pi	ni-pi0) (& rho-)		
res_ENDVERTEX_CHI2 < 9			
h_TRACK_CHI2NDOF < 3			
h_TRACK_GhostProb < 0.4			
B_DiraAngle < 0.06			
B_PT>2000			
B_IPCHI2_OWNPV<9.0			
gamma_CL > 0.2			
gamma_PP_IsPhoton>0.6			
gamma_PT > 3000			

BDT VARIABLES

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

ANALYSIS SCHEME (2)

- 3. <u>PID studies :</u>
- 4. **Develop MVA selection**
- 5. <u>Fit B masses</u>
- 6. Fit (hh) mass VS helicity

PHOTON POLARIZATION (KSHHG)

On peut mesurer la distribution angulaire d'émission du photon par rapport au plan hadronique de l'état final :

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \sum_{i=0,2,4} a_i(s,s_{13},s_{23})\cos^i\theta + \lambda_\gamma \sum_{j=1,3} a_j(s,s_{13},s_{23})\cos^j\theta$$

(PHOTON POLARIZATION)

Une analyse basée sur la dépendance temporelle de la largeur de désintégration :

$$\Gamma_{B(\bar{B})^{0}_{(s)} \to \Phi^{CP}\gamma}(t) = |A|^{2} e^{-\Gamma_{(s)}t} \left(\cosh(\Delta\Gamma_{(s)}t/2) + \mathcal{A}_{\Delta}\sinh(\Delta\Gamma_{(s)}t/2) \right)$$

$$\pm \mathcal{C}_{\mathcal{CP}}\cos(\Delta m_{(s)}t) \mp \mathcal{S}_{\mathcal{CP}}sin(\Delta m_{(s)}t) \right)$$

$$\mathcal{S}_{\mathcal{CP}} \sim sin2\Psi sin\phi_{(s)}$$

$$\mathcal{A}_{\Delta} \sim sin2\Psi cos \phi_{(s)}$$

 $\Phi_{(s)}$ la phase de violation de CP, et 1

+ plot Carla workshop kshhg?

Avec :

A^{Δ} is sensitive to $\operatorname{Re}(C'_7)$

 \mathcal{A}_{Δ}

.

(2D MASS FIT)

<u>Make use of the helicity angle</u>

 $Cos^{2}(\Theta_{H})$ for S- waves : π^{0} backgrounds Sin²(Θ_{H}) for P-waves : K*(892) γ , K1(1410) γ , ϕ (1020) γ Cos²(Θ_{H}).sin²(Θ_{H}) for D-waves : K* 2 (1430) γ , f' 2 (1525)

Preliminary look to the data run1+run2 (2.7 + 1.0 fb⁻¹) :

- Clear D-wave contribution in the $K_{2}^{*}(K\pi)$ and $f'_{2}(KK)$ region
- Expecting a first observation of $B_s \rightarrow f'_{31}$ [1525) γ and $B^0 \rightarrow K_1$ (141

Boris Quintana - Status of $B \rightarrow (hh) \gamma$ analysis

TRIGGER SYSTEM

Bunch crossing too high for the detector to record All -> Trigger selection implemented in the hardware based on fast informations (details(deposits))exemple tck ?

Aftert reconstruction of event :

Further selection at HLT before storage

LHCb 2012 Trigger Diagram					
40 MHz bunch crossing rate					
	$\overline{\nabla}$	$\overline{\nabla}$			
L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures					
450 kHz h [±]	400 kHz µ/µµ	150 kHz e/γ			
	$\overline{\Delta}$	-			
	Defer 20%	o to disk			
	∇				
Software High Level Trigger					
29000 Log	29000 Logical CPU cores				
Offline reconstruction tuned to trigger time constraints					
Mixture of exclusive and inclusive selection algorithms					
∇	∇	$\mathbf{\nabla}$			
5 kHz (0	0.3 GB/s) to	o storage			

ANALYSIS SCHEME

1. <u>Use data from inclusive line hh gamma :</u>

Trigger:

L0 : L0 photon	Ш	L0 electron	(TOS)
HLT1 : Hlt1trackAllL0	П	Hlt1trackPhoton	(TOS)
HLT 2 : Hlt2RadiativeTopoTrack	- 11	Hlt2RadiativeTopoPhoton	(TOS)

<u>Stripping :</u>

Inclusive hhy (2pi_Line)

Reconstruct the 2h gamma categories :

 $K\pi \& KK \& pK$ hypothesis reconstructed by applying PID-substitution to stripped candidates

Classify $h^+ h^- \gamma$ candidates according to largest h-ProbNNx_i (x_i = π ,K,p)

i.e. h== x_i if probNN x_i (h) > 0.1 & probNN x_i (h) > probNN x_j (h) for all $x_j \neq x_i$

- Principles (slides master2 ?)
- Combi bkg selection
 - Training

- Testing
- FoM
- Efficiency