Introduction	Decay	Qqq	QQq	Exotics	Outlook

Report on the Paris meeting on heavy baryons and exotics

Jean-Marc Richard

Institut de Physique Nucléaire de Lyon Université de Lyon–IN2P3-CNRS Villeurbanne, France

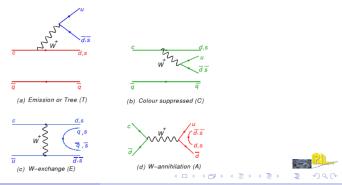
Arles, November 2018

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Table of	contents				

Introduction

- 2 Decay of charmed particles
- Singly-heavy baryons
- 4 Doubly-heavy baryons

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Introduc	tion				


- June 2018
- Spectroscopy of heavy baryons and exotics
- Production
- Weak decays
- Organizers: Emi Kou (Orsay), Matthew Charles (Paris), Jean-Marc Richard (Lyon), Patrick Robbe (Orsay), Yanxi Zhang (Tsinghua)
- Also recent workshop at CERN about perspectives with LHCb upgrade

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Decay o	f charmed	particles			

• History: the shock of 1980 (Bacino et al.)


 $au(D^+)/tau(D^0)\gtrsim 4.5$

- Confirmed at CERN (Baldini 1982) and Fermilab (Bacino, 1982)
- Explained by *W*-emission, *W*-exchange *c*s̄-fusion, and interferences

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Decay o	f charmed	particles			

Extended to baryons

Results at first rather puzzling

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Weak de	ecays				

TABLE I. Lifetime of flavored mesons and baryons (in s) (Amsler *et al.*, 2008). Lifetimes of Ξ_b^- and Ω_b^- ; see also Aaltonen *et al.* (2009).

K^{\pm}	$(123.85 \pm 0.24) \times 10^{-10}$	K_S^0	$(0.8953 \pm 0.0005) \times 10^{-10}$
K_L^0	$(511.4 \pm 2.1) \times 10^{-10}$	D^{\pm}	$(1040 \pm 7) \times 10^{-15}$
$D^{\overline{0}}$	$(410.1 \pm 1.5) \times 10^{-15}$	D_s	$(500 \pm 7) \times 10^{-15}$
B^{\pm}	$(1638 \pm 11) \times 10^{-15}$	B^0	$(1530 \pm 9) \times 10^{-15}$
B_s	$(1466 \pm 59) \times 10^{-15}$		
Λ	$(2.631 \pm 0.020) \times 10^{-10}$	Σ^{\pm}	$(0.8018 \pm 0.0026) \times 10^{-10}$
Ξ^0	$(2.90 \pm 0.09) \times 10^{-10}$	Ξ^-	$(1.639 \pm 0.015) \times 10^{-10}$
Ω^{-}	$(0.821 \pm 0.011) \times 10^{-10}$	Λ_c	$(200\pm6)\times10^{-15}$
Ξ_c^+	$(442 \pm 26) \times 10^{-15}$	Ξ_c^0	$(112^{+13}_{-10}) \times 10^{-15}$
Ω_c^0	$(69 \pm 12) \times 10^{-15}$	Λ_b	$(1230\pm74) \times 10^{-15}$
Ξ_b^-	$(1490^{+200}_{-180}) \times 10^{-15}$	Ω_b^-	$(1130^{+530}_{-400}) \times 10^{-15}$

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Singly-h	eavy bary	ons			

- Rather well documented now
- In particular CLEOc and other B factories
- And colliders.
- Usually well understood. One exception is DØ's $\Omega_b(bss)$, with $\Omega_b \Lambda_b$ about 100 MeV higher than expected
- CDF and LHCb mass more plausible $(\Omega_b \Lambda_b \simeq \Omega_c \Lambda_c)$

JMR

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Singly-h	eavy baryo	ons			

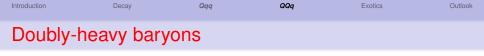
- Latest results discussed by Shen, Lyuboviskij, He
- In particular, set of 5 new Ω_c^* , with various J^P assignments

Observation of Five New Narrow Ω^0_c States Decaying to $\Xi^+_c K^-$

R. Aaij *et al.* (LHCb Collaboration) Phys. Rev. Lett. **118**, 182001 – Published 2 May 2017

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1 \substack{+0.3 \\ -0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 ^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$< 2.6\mathrm{MeV}, 95\%$ CL		

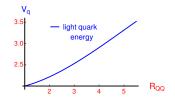
- And various interpretations
- Valery Lyubovitskij discussed the structure (and decay) of heavy baryons in the CCQM (Covariant Constituent Quark Model) a kind of variant of QCD sum rules


cc

< ロ > < 同 > < 回 > < 回 >

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Doubly-	heavy bary	yons			

- Experimental situation reviewed by Murdo Thomas Traill
- SELEX (Fermilab) found Ξ_{cc}^+ near 3519 MeV in two modes $(\Lambda_c + \cdots, D + \cdots)$
- Non confirmed by FOCUS, BaBar, Belle, LHCb
- Various claims by SELEX for isospin partners, never published
- LHCb Ξ_{cc}^{++} near 3621 MeV $\rightarrow \Lambda_c K^- \pi \pi$ (2017)
- Expl. if $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$
- Second paper (2018) $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi$
- Lifetime $\tau(\Xi_{cc}^{++} = 256^{+22}_{-20}((stat)) \pm 14(stat)$ fs
- to be compared to \sim 200 for $\Lambda_c,$ \sim 500 for $D_s,$ \sim 1000 for $D^+,$ \sim 400 for D^0
- old \sim 70 for Ω_c , new \sim 270 by LHCb this year


ト くぼ ト く ヨ ト く ヨ ト

- Interesting talk by Brodsky, who hardly gives up SELEX results
- And suggests the possibility of two types of DCB
 - [cq]c type SELEX
 - [cc]q type LHCb
 - Pandora box?
- Talk by JMR about constituent models
- Discuss diquark-quark vs. Born-Oppenheimer
- Diquark either as a fundamental constituent
- Or an approximation to the 3-quark problem? Not very good. First excitations within *QQ*.
- Born-Oppenheimer (1927) best suited
- Provide with an effective QQ pot. to be compared to the QQ one

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Doubly-	heavy bary	/ons			

- Obviously $r(QQ) \ll r(Qq)$ in (QQq) for large M/m
- The two heavy quarks are clustered in the ground state
- But the naive diquark model is misleading
- The diquark internal energy is modified by the third quark,
- The first excitations are within QQ

Born-Oppenheimer potential for (*QQq*), M/m = 5, $V \propto \sum_{i < j} r_{ij}$ Fleck, R., PTP 82 (1989) 760

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Exotics:	general c	onsiderati	ons		

- Many candidates, e.g.,
- Z baryon of the 60, coming back as light pentaquark
- Baryonium

Volume 72B, number 1

PHYSICS LETTERS

5 December 1977

< ロ > < 同 > < 回 > < 回 >

EVIDENCE FOR A NARROW WIDTH BOSON OF MASS 2.95 GeV

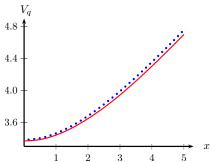
Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milano-Purdue-Vienna Collaboration

- Many speculations *Arx Tarpei Capoli Proxima* ("the Tarpeian Rock is close to the Capitol")
- Dibaryon H, ...
- Heavy pentaquark cuuds cddus, cssud (Gignoux et al., Lipkin)

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Exotics:	sociology				

- As QQqq becomes fashionable
- Matthew effects
 - 11th hour effect *So the last will be first, and the first last* (Matthew 20.16)
 - For to him who has will more be given; and from him who has not, even what he has will be taken away (Mathew 25.29)
 See R. Merton, The Matthew effect in Science Science, 159:56-63 (1968)
- Early papers 1981 \rightarrow conscientiously or inadvertently omitted

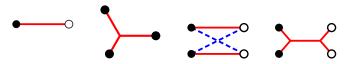
Favorable symmetry breaking in $QQ\bar{q}\bar{q}$


- Symmetry breaking \searrow ground state energy. For instance $p^2 + x^2 + \lambda x$, gives $E = 1 - \lambda^2/4$
- In 4-body, often benefits to threshold For instance, $(\mu^+, \mu^+, \mu^-, \mu^-)$ stable becomes (M^+, m^+, M^-, m^-) unstable if $M/m \gtrsim$ 2.2 (Varga, Bressanini)
- Charge-conjugation breaking benefits to the 4-body system

$$H = \frac{p_1^2}{2M} + \frac{p_2^2}{2M} + \frac{p_3^2}{2m} + \frac{p_4^2}{2m} + V = H_{\text{even}} + H_{\text{odd}}$$
$$= \left[\sum_i \frac{p_i^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4m}\right) \left(p_1^2 + p_2^2 - p_3^2 - p_4^2\right),$$

- μ kept constant: $|M m| \nearrow \Rightarrow E \searrow$ at <u>fixed</u> threshold
- H₂ much more stable than Ps₂, and in a chromoelectric quark model (flavor independent) $QQ\bar{q}\bar{q}$ becomes stable above some critical M/m

Introduction	Decay	Qqq	QQq	Exotics	Outlook
QQq̄q					


- Doubly-heavy tetraquark in the BO limit
- If restricted to color 33

- Implies $QQ\bar{q}\bar{q} \simeq QQq + Qqq Q_barq$ (see Eichten+Quigg)
- But this is more favorable with admixture of color 66 configurations

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Stability	of <i>QQ</i> q̄q̄:	bb or cc?			

- bbqq
 for sure. See, e.g., the talk on Lattice QCD by Bicudo (Lisbon),
- $cc\overline{u}\overline{d}$ in some models, for $J^P = 1^+$, thanks to favorable chromomagnetism
- bcqq suggested by string model of confinement
- under discussion with some lattice groups

• The flip-flop interaction gives more attraction, if not restricted by the Pauli principle

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Signatur	e of QQq	ą?			

- $bb\bar{q}\bar{q}$ decays weakly. Already discussed in some papers
- $bc\bar{u}\bar{d}$, if below $D+\bar{B}^*$, weakly
- ccūd
 - If very loosely bound: peak in $DD\pi$
 - if loosely bound: $DD\gamma$
 - if deeply bound (unlikely) : weak decay

Introduction	Decay	Qqq	QQq	Exotics	Outlook
All-heav	ıy bb <u>b</u> b				

- A few speculations
- Some predictions of bing in the quark model
- Based on erroneous 4-body calculations!
 - Some authors consistent: also wrong on tetraneutron
 - Some authors very good on quarkonium, but ∖ as n ∧ Corruptio optimorum pessima¹
- Reasoning like: the heavier the quark, the mode deeply bound QQQQQ
- But the threshold also decreases!

00

JMR

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Other ex	xotics				

• Anticharmed pentaquark Qqqqq

- favorable chromomagnetic interaction (Gignoux et al., Lipkin, 1987)
- Searched for at Fermilab (Ashery et al.) and HERA not conclusive
- Not found stable in recent revisits
- Double charm dibaryon QQqqqq: same conclusion
- Hidden-charm pentaquark in the continuum
 - Technical progress: real scaling (Hiyama, Oka, Hosaka, R.)
 - Clear separation of genuine resonances
 - Candidates with $(3/2)^-$ and $(5/2)^-$, but too high in simple models
- Hidden-charm pentaquark below threshold
 - Some states predicted below lowest mes. + bar.
 - Quantum numbers # from LHCb pentaquarks
 - New final states to be analyzed (Valcarce, Vijande, R.)

00

Introduction	Decay	Qqq	QQq	Exotics	Outlook
Outlook					

- Drastic revision of $\tau(\Omega_c)$
- Other lifetimes to be re-mesured? and SL BR?
- New excitations identified in Qqq sectors, some strikingly narrow
- QQq gives access to the effective
- And resurrected speculations on QQqqq which could be the first stable multiquark apart from the deuteron
- A consequence of <u>flavor independence</u> and favorable *C*-symmetry breaking

00