

The Proper Way to Extract Spectra (merci, M. Bongard)

Robert Lupton, Princeton University LSST Pipeline/Calibration Scientist

PCWG 2018-10-04

Wavelength-calibrated, flux-calibrated, 1-D spectra with the maximum possible S/N.Parameters which allow us to reconstruct the atmospheric absorption using *tran (and which have names such as "Pressure" and "PWV").

- Longer exposure times decrease our *statistical* errors at the cost of *systematic* errors; If we pay attention to statistical efficiency we may be able to have our butter without paying for it.
- Estimation problems such as this are usually best handled by forward modelling; we can incorporate priors if desired, and we asymptotically approach the MLE.

The model

In photometry, we measure $I(\mathbf{x})$:

$$I(\mathbf{x}) = B(\mathbf{x}) + t_{exp} D(\mathbf{x}) + oldsymbol{\phi} \otimes U(\mathbf{x}) + oldsymbol{\epsilon}$$

where $B(\mathbf{x})$ and $t_{exp}D(\mathbf{x})$ the bias and dark frames, $\phi(\lambda)$ the PSF, $U(\mathbf{x})$ the Universe. and ϵ the noise in the image.

We then proceed to measure the properties of U (for example positions and fluxes of objects) by writing down the likelihood (or posterior probability) for a model of U and maximimising (or sampling from) it.

The model

When we're doing spectroscopy, we measure $I(\mathbf{x})$:

$$U(\mathbf{x}) = B(\mathbf{x}) + t_{exp} D(\mathbf{x}) + \int \phi(\lambda) \otimes U(\mathbf{x},\lambda) \otimes d(\mathbf{x},\lambda) Q(\lambda) \, rac{d\lambda}{\lambda} + \epsilon$$

where $B(\mathbf{x})$ and $t_{exp}D(\mathbf{x})$ the bias and dark frames, $\phi(\lambda)$ the PSF, $U(\mathbf{x})$ the Universe, and d the dispersion function $d(\mathbf{x}, \lambda) = a\delta(\mathbf{x}) + d'(\mathbf{x}, \lambda)$.

$$\begin{split} I(\mathbf{x}) &= B(\mathbf{x}) + t_{exp} D(\mathbf{x}) + a \int \phi(\lambda) \otimes U(\mathbf{x}, \lambda) Q(\lambda) \frac{d\lambda}{\lambda} + \\ &\int \phi(\lambda) \otimes U(\mathbf{x}, \lambda) \otimes d'(\mathbf{x}, \lambda) Q(\lambda) \frac{d\lambda}{\lambda} + \epsilon \\ &= (1 - a)(B(\mathbf{x}) + t_{exp} D(\mathbf{x})) + a I_0(\mathbf{x}) + \\ &\int \phi(\lambda) \otimes U(\mathbf{x}, \lambda) \otimes d'(\mathbf{x}, \lambda) Q(\lambda) \frac{d\lambda}{\lambda} + \epsilon \end{split}$$

The model

Assuming that we understand the bias and dark current and can drop them, we have

$$I(\mathbf{x}) = aI_0(\mathbf{x}) + \int \boldsymbol{\phi}(\lambda) \otimes U(\mathbf{x},\lambda) \otimes d'(\mathbf{x},\lambda) Q(\lambda) \, rac{d\lambda}{\lambda} + \boldsymbol{\epsilon}$$

Let's ignore the 0-order image and introduce the source spectrum, S and atmospheric absorption A

$$I(\mathbf{x}) = \int A(\lambda; \boldsymbol{ heta}) \boldsymbol{\phi}(\lambda) \otimes S(\mathbf{x}, \lambda) \otimes d'(\mathbf{x}, \lambda) Q(\lambda) \, rac{d\lambda}{\lambda} + \boldsymbol{\epsilon}$$

We can solve for θ by ML.

- Reliable CCD calibration products:
 - bias and overscan
 - dark
 - crosstalk
 - non-linearity
 - CTE
 - flatfield. This is a little tricky with slitless spectra
- A camera model:
 - $\bullet \hspace{0.2cm} \text{position, } \lambda \rightarrow \text{pixel}$
 - instrumental PSF
 - $\bullet\,$ Variation of these with focus, temperature, rotation, \ldots
- A CCD model:
 - gains/QE
- A Telescope model:
 - throughput
- The atmospheric PSF
 - as a function of λ ($lpha \sim \lambda^{-1/5} \cdots \lambda^{-1/4}$?)

Some of these are probably OK:

- The instrumental calibrations (including flats)
- The camera distortion model
- The camera PSF (after allowing for focus which probably shows up in the distortion)
- Some of these might be OK:
 - telescope transmission
 - gain/QE

Some of these are scary:

- telescope throughput
- $S(\mathbf{x}, \lambda)$
 - SED of primary source
 - Contamination

"When I was younger, boys of your age used to be nice and innocent." "Now we are only nice. One must specialise in these days."

"We can't know all that; I'll use equivalent widths instead" *I.e* Build a model for *U* and estimate it from the data; this is called a "spectrum".

Assume that Q is uniform over some wavelength interval. Measure the flux in some restricted wavelength ranges ("continuum[12]" and "line") Calculate a number from these fluxes.

You can describe this in the ML formalism as estimating the amplitude of three weight functions w_a , w_b , w_c :

$$w_i(\lambda) = egin{cases} 1 & i_1 < \lambda < i_2 \ 0 & ext{otherwise} \end{cases}$$

The advantage is that we have an error estimate, we can put a prior on $Q(\lambda)$, and that we can investigate other options (e.g. an equivalent width measured on T not U)

- Direct estimation of T
 - maybe with constrained parameters e.g. O₃
- Equivalent widths
- Ignoring certain spectral ranges makes the data equivalent to sets of narrow bands; using notch filters implements this in hardware.
- Regressions against airmass enable us to test these approaches... and/or separate parameters such as the telescope transmission from the atmosphere.
- The final answer will come from our ability to make FGCM irrelevant.