Testing electronic calibration with CCD Reset Gate

CCD output stage

- Pixel content is transferred to the capacitive node. The voltage on the node is amplified through one (ITL) or 2 (E2V) transistors to reach the OS output of the channel.
- When the RG clock is high, the capacitive node is forced to the RD voltage instead.
- When RG is released, there is a downward jump in the output voltage, and it stabilizes at the 'post-reset level'

E2V readout sequence

E2V signal with RG

E2V signal with RG

ITL readout sequence

ITL signal with RG

Scans taken on ETU2

Using RG-generated signal

- Trying to make fake stars
- Settling due to the shift of the DCrestore level

Frames with built-in calibration

Adding calibration rows and columns + baseline

Structure of calibration areas

- Settling issue when shifting to RG-generated signal (symmetrical to issue when shifting back to normal level)
- 8 pixels is too short for settling the calibration injection value
- Transient noise injection, otherwise noise ~ 40 e- (CCD kTC reset noise)

10

Using RG-generated signal

- Rows post-frame (less contamination, no settling issue),
- Three PTC runs with change of gain for third run

Using RG-generated signal

- Rows post-frame (less contamination, no settling issue)
- Slope ~ 10^-4 over PTC run

