Updates on Survey Uniformity with FGCM... and a bit about reddening

Eli Rykoff, + Dave Burke and the DES Calibrations Crew

LSST/DESC Calibration Workshop

03 October, 2018

DARK ENERGY SURVEY

Introduction

- The Forward Global Calibration Method (FGCM) solves the global calibration problem with a physical model of the atmosphere and instrument
- Please see Burke, Rykoff+18 <u>http://</u> <u>adsabs.harvard.edu/abs/2018AJ....155...41B</u> and my talk in May: (link)
- Will describe progress, further steps, etc.

What is FGCM?

- The "Forward Global Calibration Method"
 - Solve the global calibration problem with a physical model of the atmosphere + instrument
 - Picking up on Stubbs & Tonry (2006)
 - Requires instrument throughput measurements
- Given a set of atmospheric parameters at any given time (under photometric conditions) we can predict the atmospheric extinction as a function of wavelength
 - Also need to know object SED (see e.g., Li+16)
- Once we know the atmospheric extinction, can predict fluxes of all the objects in an exposure

Advantages of FGCM

- Forward model approach always leads to physically possible solutions
 - Allows physically-motivated non-linearities with airmass
 - No gray terms in the model means no runaway solutions
- Uses full range of star colors increase the s/n and this is useful information!
- Instrumental transmission variations, plus possible evolution of passbands is properly incorporated
- Works best with more overlap in time and space (like übercal), and multiple bands per night is very useful

The Atmosphere Model

- Atmospheric transmission can be described with a small number of parameters
 - Precipitable water vapor (PWV)
 - Aerosol Optical Depth (AOD) τ and α

 $\tau(\lambda) = \tau_{7750} \times (\lambda/7750 \,\text{\AA})^{-\alpha}$ $S_{\tau}(\lambda) = e^{X\tau(\lambda)}$

- Ozone (O₃)
- Given zenith distance and barometric pressure, compute Rayleigh and O₂ using MODTRAN

Atmosphere Constituents

• The FGCM standard atmosphere model

Fit Parameters

- PWV varies linearly through the night
 - Could/should add quadratic term
- A single-constituent aerosol, with optical depth τ₇₇₅₀ that varies linearly through the night, and single α per night
- A single value for Ozone each night
- Plus airmass and site-monitored barometric pressure

Instrumental Passband

- Instrumental effects (filter variations, anti-reflective coating differences, CCD QE differences) are as big or bigger than atmospheric effects
- Require (at least) CCD-by-CCD scans
 - For DES from the "DECal" system
 - For LSST from the CBP

Filters+CCDs

- From the DECal monochromatic scans
 - g band especially variable from chip to chip

Spatial Residuals

- Each panel is one exposure
- The background are the photometric residuals
- Inside the circles shows the predicted photometric residuals from the aperture correction

Bernstein++18

Aperture Corrections

Compute median of Aperture mag (8") - (6")

Median Delta-Mag

Median Delta-Mag

Gary's Conclusion

In summary, we find that *all* of the deviations above $\approx 1 \text{ mmag}$ rms from a static response function plus secant airmass law on short timescales are plausibly attributable to spatial/temporal variations in aperture corrections. The A_t statistic measured from bright stars is an accurate predictor of these aperture corrections, so on a typical half-hour stretch of clear-sky observations we can homogenize the exposure zeropoints to $\approx 1 \text{ mmag}$, and if we have sufficient stellar data in an exposure to map out variation of A_t across the FOV, we could reduce any intra-exposure inhomogeneity to similar level.

Spatial Variations in Wide-Field

• Comparing predictions to A

A typical exposure

0.000584 1.00 0.75 0.50 -0.001324 0.25 -0.003231 CCD Gray δ Dec. 0.00 -0.25-0.50-0.005139 -0.75 -1.00-0.007046 -0.50.0 0.5 1.0 -1.0δR. A. 1.00 -0.000062 0.75 0.50 -0.001969 0.25 Delta Aper δDec. 0.00 -0.25-0.50-0.005784 -0.75 -1.00-0.007691 -1.0-0.5 0.0 0.5 1.0 δR. A.

Spatial Variation in Wide Field

 Some less typical exposures (top: measurements; bottom: predictions)

Spatial Variation in Atmospheric PSF

Ambiguities in Calibration

- We currently use uncorrected aperture magnitudes as the basis of calibration
- This leads to ambiguities in the sources of variation

Modeling Magnitude Errors

• The FGCM computation for chi2 uses the quoted photometric errors (as comes out of the pipeline)

$$\overline{m_b^{\text{std}}(j)} = \frac{\sum_i m_b^{\text{std}}(i,j)\sigma^{\text{phot}}(i,j)^{-2}}{\sum_i \sigma^{\text{phot}}(i,j)^{-2}}$$
$$\chi^2 = \sum_{(i,j)} \frac{\left(m_b^{\text{std}}(i,j) - \overline{m_b^{\text{std}}(j)}\right)^2}{\sigma^{\text{phot}}(i,j)^2}$$

- This can be biased near the faint end because of fluctuations.
- We can predict the magnitude error empirically given the sky brightness, seeing, and knowledge of the true magnitude + local transparency

Modeling Magnitude Errors

Modeling Magnitude Errors

 Look at gray residuals per exposure for red vs blue stars

Exposure Residual (blue stars)

With error modeling

Exposure Residual (blue stars)

Gaia Flux Excess

- Before I look again at the uniformity compared to Gaia, let's look at the uniformity of Gaia internally
- Gaia DR2 suggests using the "flux excess" which is $(flux_{BP} + flux_{RP}) / flux_G (>~ 1)$ to cut bad objects

Fig. 18. Median flux excess in galactic coordinates for a random set of sources.

Gaia Flux Excess

- We can calibrate the flux excess as a function of Gaia color for both Gaia Object Generator (GOG18) and Gaia DR2
 - GOG18 is supposed to give realistic errors for the full Gaia survey

Median Flux Excess Map

 Look at the median flux excess as a function of position for GOG18

Median Flux Excess Map

 Look at the median flux excess as a function of position for Gaia DR2

Gaia BP and DES r

Offsets are highly correlated with internal Gaia offsets

Gaia RP and DES I

Offsets are highly correlated with internal Gaia offsets

Gaia G and DES r

- Latest comparison plot between Gaia G and DES r + g-r + r-i + i-z (best SED transfer)
- 2.2 mmag uniformity (low Galactic latitude)

HSC PDR1 Uniformity

- ~4 mmag in r-band after comparing to Gaia DR2
- Though some systematics between widely separated fields

About that Reddening...

DR2

GOG18

And the Reddening Law!

33

 Comparing reddening laws shows issues at the >mmag level (depending on amount of reddening)

Discussion

• This is a grab-bag of issues to get below the 5mmag uniformity level (that I know about...)