
Geant4: A Simulation toolkit
O. Stézowski and A. Cazes

With many thanks to the Geant4 community !!!!

The roadmap of the week

W1: installation / running a G4 application

W2: Primary generator, GPS, physics list

NOW, HOW does it really work ?

W4: Sensitive detectors / user’s actions

W3: Geometries !

!2

Do the one
you want to practice on

W4: Sensitive detectors / user’s actions

User’s actions

Sensitive detector

General aspects

!3

!4

To extract information from G4

 Given geometry, physics and primary track generation, G4 does proper physics simulation “silently”
 ➥ You have to add a bit of code to extract information useful to you

 There are two ways:
❶ Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

 ☛ You have full access to almost all information
 ☛ Straight-forward, but do-it-yourself

 ❷ Use Geant4 scoring functionality
 ☛ Assign G4VSensitiveDetector to a volume i.e. make it a detector !
 ☛ It is based on Hits, a snapshot of the physical interaction of a track or an accumulation of
 interactions of tracks in the sensitive (or interested) part of your detector.
 ☛ Hits collection is automatically stored in G4Event object, and automatically accumulated
 if user-defined Run object is used.
 ☛ Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary

+ G4Digi, G4DigitizerModule ... the electronic chain could be emulated !

!5

Mapping in Geant4: touchable

As any real detector, a mapping is required to know where things happen
➥ Done using the copy# which is set at the G4VPhysicalVolume level

one module

de
ad

 la
ye

r

de
ad

 la
ye

r

detector

an identical module

aphysiBox = new G4PVPlacement(
 0,
 G4ThreeVector(X_C, Y_C, Z_C),
 alogicBox,
 "PBlueCube",
 logicWorld,
 false,
 0); // THIS IS the copy number !

The copy# is configurable by the user [collaboration policy]
Note: G4PVDivision, ... deal internally with copy #,

➥ to see whether or not it fits the user’s requirements

!6

Mapping in Geant4: touchable

0

1

2

3

4

5

0

0

1

2

3

4

5

-1 -1

1

There are many different possibilities

0

1

2

3

4

5

0

6

7

8

9

10

11

-1 -1

1

One has to deal with
sequences of numbers.
For that G4 provides
G4TouchableHistory

a unique copy#
per detectors

The particle goes through 2 ☛ 7 ☛ 10 The particle goes through 0:2 ☛ 1:1 ☛ 1:4

W4: Sensitive detectors / user’s actions

User’s actions

Sensitive detector

General aspects

!7

The user’s application

!8

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AGammaGun : public G4VUserPrimaryGeneratorAction
{
// the virtual method to be implemented by the user
 virtual void GeneratePrimaries(G4Event* anEvent);
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user
void ConstructParticle();
// the virtual method to be implemented by the user
void ConstructProcess();
// the virtual method to be implemented by the user
void SetCuts();
};

the detector construction - the description of the physics - the primary generator

+
many other hooks

but
not mandatory

// The User's main program to control / run simulations
int main(int argc, char** argv)
{
// Construct the run manager, necessary for G4 kernel to control everything
 G4RunManager *theRunManager = new G4RunManager();

 // now set the others user actions
 theRunManager->SetUserAction(new MyRunAction());
 theRunManager->SetUserAction(new MyEventAction());
 theRunManager->SetUserAction(new MyTrackingAction());
 theRunManager->SetUserAction(new MySteppingAction());
.
.
 return 0;
}

Start run # 1 :

Start event # i

Start track # j

Start step # k

Stop step # k

Stop track # j

Stop event # i

Stop run # 1

Where are they called in the G4 loop ?

G4UserXXXAction should be defined by the user

class MyRunAction : public G4UserRunAction
{

 public:
 virtual void BeginOfRunAction(const G4Run *therun);
 virtual void EndOfRunAction(const G4Run *therun);
};

class MyTrackingAction : public G4UserTrackingAction
{
public:
 virtual void PreUserTrackingAction(G4Track *track);
 virtual void PostUserTrackingAction(G4Track *track);
};

 class MySteppingAction : public G4UserSteppingAction
 {
 public:
 virtual void UserSteppingAction(const G4Step *step) ;
 };

class MyEventAction : public G4UserEventAction
{
public:
 virtual void BeginOfEventAction(const G4Event *event);
 virtual void EndOfEventAction(const G4Event *event);
};

User’s hooks to extract information

Where are they called, what is provided by Geant4 ...

!10

TODO List

 Write your Run, Event, Tracking and Stepping Action. Run adding one by one.

In the RunAction, print out:
 begin - it is starting [and the world’s name]
 end - the run ID and the number of simulated events
In the EventAction, print out:
 begin - it starts every N (=10) events
 end - it ends + the number of primary vertexes
In the TrackingAction, print out:
 begin - the track ID, the parent ID and what is tracked
 end - the current volume name, total and kinetic energy, velocity
In the SteppingAction, print out:
 the step length if it is the first step in a volume

The user’s application

W4: Sensitive detectors / user’s actions

User’s actions

Sensitive detector

General aspects

!11

!12

Sensitive detector - principle

Goal: avoid going into tracking/stepping details for the user
Mechanism:
❶ attach to a volume a sensitivity
❷ at any step in it keep the required information in a hit
❸ push it on a stack [in a collection]
❹ the list of hits is available in the G4Event

➥ retrieve info at the EndOfEventAction

⎬

❶
Hit
❷

keep:
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

class defined by
the user

classes defined by
the user

!13

⎬

❶
Hit
❷

keep:
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

 // Now add a blue cube to the world
 asolidBox = new G4Box("BlueCube",Side/2.,Side/2.,Side/2.);
 alogicBox =
 new G4LogicalVolume(asolidBox, CubeMaterial, "LBlueCube", 0, 0, 0);

 // the cube is blue
 visatt = new G4VisAttributes(G4Colour(0.0, 0.0, 1.0));
 visatt->SetVisibility(true);
 alogicBox->SetVisAttributes(visatt);
 // and is a sensitive detector of type MySD
 MySD *sd = new MySD(SDname="/MySD");
 G4SDManager* SDman = G4SDManager::GetSDMpointer();
 SDman->AddNewDetector(sd);
 alogicBox->SetSensitiveDetector(sd);

 aphysiBox = new G4PVPlacement(...)

A sensor is added to the SD manager & a logical volume

#include "G4VSensitiveDetector.hh"
#include "MySingleHit.hh"

class G4Step;
class G4HCofThisEvent;
class G4TouchableHistory;

class MySD : public G4VSensitiveDetector
{
 MySD(G4String name = "/MySD");

 void Initialize(G4HCofThisEvent *HCE);
 G4bool ProcessHits(G4Step *aStep, G4TouchableHistory *hist);
 void EndOfEvent(G4HCofThisEvent *HCE);

private:
 MyHitsCollection *myCollection;
};

ProcessHits method called

to be implemented by the user

Sensitive detector, implementation

!14

⎬

❶
Hit
❷

keep:
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

#include "G4VSensitiveDetector.hh"
#include "MySingleHit.hh"

class G4Step;
class G4HCofThisEvent;
class G4TouchableHistory;

class MySD : public G4VSensitiveDetector
{
 MySD(G4String name = "/MySD");

 void Initialize(G4HCofThisEvent *HCE);
 G4bool ProcessHits(G4Step *aStep, G4TouchableHistory *hist);
 void EndOfEvent(G4HCofThisEvent *HCE);

private:
 MyHitsCollection *myCollection;
};

ProcessHits method called

class MyHit : public G4VHit
{
public:
 G4double eDep;
 G4int detID;

 inline void *operator new(size_t);
 inline void operator delete(void *aHit);
...
};

typedef G4THitsCollection<MyHit> MyHitsCollection;
extern G4Allocator<MyHit> MyHitAllocator;
inline void* MyHit::operator new(size_t)
{
 void *aHit = (void *) MyHitAllocator.MallocSingle(); return aHit;
}
inline void ParisSingleHit::operator delete(void *aHit)
{
 MyHitAllocator.FreeSingle((MyHit*) aHit);
}

G4 utilities for efficient
memory management

Sensitive detector, implementation

!15

⎬

❶
Hit
❷

keep:
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

ProcessHits method called

MySD::MySD(G4String name): G4VSensitiveDetector(name)
{
 G4String HCname = "myHitCollection"; collectionName.insert(HCname);
}
void MySD::Initialize(G4HCofThisEvent* HCE)
{
 static int HCID = -1; myCollection = new MyHitsCollection(SensitiveDetectorName,collectionName[0]);
 if (HCID < 0)
 HCID = GetCollectionID(0);
 HCE->AddHitsCollection(HCID,myCollection);
}
G4bool ParisTrackerSD::ProcessHits(G4Step* aStep, G4TouchableHistory * /*touch*/)
{
 // nothing to be stored if no energy
 G4double edep = aStep->GetTotalEnergyDeposit();
 if (edep == 0.) {
 return false;
 }
 // a new hit is created
 MySingleHit *newHit = new MySingleHit();
 newHit->Edep = edep;
 newHit->detID
= aStep->GetTrack()->GetVolume()->GetCopyNo();

 // add this hit to the collection
 myCollection->insert(newHit);

 return true;
}
void MySD::EndOfEvent(G4HCofThisEvent*){;}

void MyEventAction::EndOfEventAction(const G4Event *evt)
{
 MyHitsCollection *THC = NULL;

 // to get back my collection
 G4HCofThisEvent * HCE = evt->GetHCofThisEvent();
 if (HCE) {
 THC = (MyHitsCollection *)(HCE->GetHC(0));
 }
 if (THC) {
 int n_hit = THC->entries();
 for (int i = 0 ; i < n_hit; i++) {
MyHit *hit= (*THC)[i];
G4cout << hit->eDep << " " << hit->detID << G4cout;
 }
 }
}

❹

❷ ❸

Sensitive detector, implementation

!16

Sensitive detectors provided

A general concrete sensitive detector G4MultiFunctionalDetector* exists
It is a collection of G4VPrimitiveScorer
 ➥ a G4VPrimitiveScorer class accumulates one physics quantity for each physical volume. Ex:

 Track length: G4PSTrackLength, G4PSPassageTrackLength
 Deposited energy: G4PSEnergyDeposit, G4PSDoseDeposit
 Current/Flux: G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent, G4PSPassageCurrent
 Others: G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

Commands are available:
 /score/dumpQuantityToFile - to dump the result in a CSV (column separated values) file

Geant4 also introduces G4VSDFilter to filter what kind of tracks is to be
 considered by sensitivity. Ex, Accepts:

only charged/neutral tracks: G4SDChargedFilter, G4SDNeutralFilter
tracks within the defined range of kinetic energy: G4SDKineticEnergyFilter
tracks of registered particle types: G4SDParticleFilter
tracks of registered particle types within defined range of kinetic: G4SDParticleWithEnergyFilter

* it inherits from G4VSensitiveDetector

!17

TODO List

• The files containing the definition of aHit and aTracker are provided
see /group/formateurs/stezowski/utilities

• Integrate them to your application, set the detectors sensitives
• Run, check how the hit collection is filled and how hits are retrieved

The user’s application

Conclusions of W4

!18

We have seen:

•how to extract information
➥ using user’s hooks
➥ using the detector sensitivity

•There are more advanced levels:
➥ notion of analysis manager: G4VAnalysisManager
➥ one can implement new G4VAnalysisManager
➥ one can implement new G4VPrimitiveScorer
➥ one can play with G4VUserXXXInformation*
➥ ...

* XXX being Run, Event, etc ...

