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The roadmap of the week 

W1: installation / running a G4 application 

W2: Primary generator, GPS, physics list

NOW, HOW does it really work ?

W4: Sensitive detectors / user’s actions

W3: Geometries !
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Do the one 
you want to practice on 



W4: Sensitive detectors / user’s actions

User’s actions

Sensitive detector

General aspects
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To extract information from G4

 Given geometry, physics and primary track generation, G4 does proper physics simulation “silently” 
               ➥ You have to add a bit of code to extract information useful to you 

 There are two ways: 
❶ Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)  

     ☛ You have full access to almost all information 
        ☛ Straight-forward, but do-it-yourself 

     ❷ Use Geant4 scoring functionality 
        ☛ Assign G4VSensitiveDetector to a volume i.e. make it a detector ! 
        ☛ It is based on Hits, a snapshot of the physical interaction of a track or an accumulation of  
             interactions of tracks in the sensitive (or interested) part of your detector. 
        ☛ Hits collection is automatically stored in G4Event object, and automatically accumulated 
              if user-defined Run object is used. 
        ☛ Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary

+ G4Digi, G4DigitizerModule ... the electronic chain could be emulated !
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Mapping in Geant4: touchable

As any real detector, a mapping is required to know where things happen
➥ Done using the copy# which is set at the G4VPhysicalVolume level

one module

de
ad

 la
ye

r

de
ad

 la
ye

r

detector

an identical module

aphysiBox = new G4PVPlacement( 
                0,          
             G4ThreeVector(X_C, Y_C, Z_C), 
    alogicBox,       
        "PBlueCube",      
        logicWorld,  
        false,     
    0); // THIS IS the copy number !

The copy# is configurable by the user [collaboration policy] 
Note: G4PVDivision, ... deal internally with copy #, 

➥ to see whether or not it fits the user’s requirements 
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Mapping in Geant4: touchable
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There are many different possibilities  
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One has to deal with 
sequences of numbers.
For that G4 provides
G4TouchableHistory  

a unique copy# 
per detectors

The particle goes through 2 ☛ 7 ☛ 10 The particle goes through 0:2 ☛ 1:1 ☛ 1:4 
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General aspects
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The user’s application

!8

Building an application requires to put together 3 mandatory bricks* 

class ARedSphereConstruction : public G4VUserDetectorConstruction 
{ 
// the virtual method to be implemented by the user  
    virtual G4VPhysicalVolume* Construct(); 
};

class AGammaGun : public G4VUserPrimaryGeneratorAction 
{ 
// the virtual method to be implemented by the user  
 virtual void GeneratePrimaries(G4Event* anEvent); 
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList 
{ 
// the virtual method to be implemented by the user  
void ConstructParticle(); 
// the virtual method to be implemented by the user  
void ConstructProcess(); 
// the virtual method to be implemented by the user   
void SetCuts(); 
};

the detector construction - the description of the physics - the primary generator

+  
many other hooks  

but  
not mandatory

// The User's main program to control / run simulations 
int main(int argc, char** argv) 
{ 
// Construct the run manager, necessary for G4 kernel to control everything 
 G4RunManager *theRunManager = new G4RunManager(); 
  
 // now set the others user actions 
 theRunManager->SetUserAction( new MyRunAction() ); 
 theRunManager->SetUserAction( new MyEventAction() ); 
 theRunManager->SetUserAction( new MyTrackingAction() ); 
 theRunManager->SetUserAction( new MySteppingAction() ); 
. 
. 
 return 0;  
}



Start run # 1 : 

Start event # i 

Start track # j 

Start step # k


Stop step # k

Stop track # j


Stop event # i  

Stop run # 1

Where are they called in the G4 loop ?

G4UserXXXAction should be defined by the user

class MyRunAction : public G4UserRunAction 
{ 

    public: 
    virtual void BeginOfRunAction(const G4Run *therun); 
    virtual void EndOfRunAction(const G4Run *therun);  
};

class MyTrackingAction : public G4UserTrackingAction 
{ 
public: 
    virtual void PreUserTrackingAction(G4Track *track);  
    virtual void PostUserTrackingAction(G4Track *track); 
};

 class MySteppingAction : public G4UserSteppingAction 
 { 
 public: 
    virtual void UserSteppingAction(const G4Step *step) ; 
 };

class MyEventAction : public G4UserEventAction 
{ 
public: 
    virtual void BeginOfEventAction(const G4Event *event);  
    virtual void EndOfEventAction(const G4Event *event); 
};

User’s hooks to extract information 

Where are they called, what is provided by Geant4 ...
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TODO List

  Write your Run, Event, Tracking and Stepping Action. Run adding one by one. 

In the RunAction, print out: 
   begin - it is starting [and the world’s name]
   end     - the run ID and the number of simulated events 
In the EventAction, print out: 
   begin - it starts every N (=10) events
   end    - it ends + the number of primary vertexes 
In the TrackingAction, print out: 
   begin  - the track ID, the parent ID and what is tracked
   end     - the current volume name, total and kinetic energy, velocity 
In the SteppingAction, print out: 
   the step length if it is the first step in a volume
 

The user’s application
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Sensitive detector - principle

Goal: avoid going into tracking/stepping details for the user
Mechanism: 
❶ attach to a volume a sensitivity
❷ at any step in it keep the required information in a hit 
❸ push it on a stack [in a collection]
❹ the list of hits is available in the G4Event

➥ retrieve info at the EndOfEventAction 

⎬

❶
Hit
❷

keep: 
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

class defined by
the user

classes defined by
the user
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⎬

❶
Hit
❷

keep: 
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

 // Now add a blue cube to the world 
  asolidBox = new G4Box("BlueCube",Side/2.,Side/2.,Side/2.); 
  alogicBox =  
     new G4LogicalVolume(asolidBox, CubeMaterial, "LBlueCube", 0, 0, 0); 

  // the cube is blue 
  visatt = new G4VisAttributes( G4Colour(0.0, 0.0, 1.0) ); 
  visatt->SetVisibility(true); 
  alogicBox->SetVisAttributes( visatt ); 
  // and is a sensitive detector of type MySD 
  MySD *sd = new MySD(SDname="/MySD"); 
  G4SDManager* SDman = G4SDManager::GetSDMpointer(); 
  SDman->AddNewDetector(sd); 
  alogicBox->SetSensitiveDetector(sd); 

     
  aphysiBox = new G4PVPlacement( ... )

A sensor is added to the SD manager & a logical volume

#include "G4VSensitiveDetector.hh" 
#include "MySingleHit.hh" 

class G4Step; 
class G4HCofThisEvent; 
class G4TouchableHistory; 

class MySD : public G4VSensitiveDetector 
{ 
      MySD(G4String name = "/MySD"); 

      void Initialize(G4HCofThisEvent *HCE); 
      G4bool ProcessHits(G4Step *aStep, G4TouchableHistory *hist); 
      void EndOfEvent(G4HCofThisEvent *HCE); 

private: 
      MyHitsCollection *myCollection; 
}; 

ProcessHits method called

to be implemented by the user

Sensitive detector, implementation



!14

⎬

❶
Hit
❷

keep: 
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

#include "G4VSensitiveDetector.hh" 
#include "MySingleHit.hh" 

class G4Step; 
class G4HCofThisEvent; 
class G4TouchableHistory; 

class MySD : public G4VSensitiveDetector 
{ 
      MySD(G4String name = "/MySD"); 

      void Initialize(G4HCofThisEvent *HCE); 
      G4bool ProcessHits(G4Step *aStep, G4TouchableHistory *hist); 
      void EndOfEvent(G4HCofThisEvent *HCE); 

private: 
      MyHitsCollection *myCollection; 
}; 

ProcessHits method called

class MyHit : public G4VHit 
{    
public:   
   G4double eDep; 
   G4int detID;  

   inline void *operator new(size_t); 
   inline void operator delete(void *aHit);  
... 
}; 

typedef G4THitsCollection<MyHit> MyHitsCollection; 
extern G4Allocator<MyHit> MyHitAllocator; 
inline void* MyHit::operator new(size_t) 
{ 
  void *aHit = (void *) MyHitAllocator.MallocSingle(); return aHit; 
} 
inline void ParisSingleHit::operator delete(void *aHit) 
{ 
  MyHitAllocator.FreeSingle((MyHit*) aHit); 
}

G4 utilities for efficient
memory management 

Sensitive detector, implementation
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⎬

❶
Hit
❷

keep: 
energy deposited,

detectorID ...

❸

Hit0
Hit1

HitsCollection G4Event

❹

ProcessHits method called

MySD::MySD(G4String name): G4VSensitiveDetector(name) 
{ 
 G4String HCname = "myHitCollection"; collectionName.insert(HCname);  
} 
void MySD::Initialize(G4HCofThisEvent* HCE) 
{ 
 static int HCID = -1; myCollection = new MyHitsCollection(SensitiveDetectorName,collectionName[0]); 
 if ( HCID < 0 )  
  HCID = GetCollectionID(0); 
 HCE->AddHitsCollection(HCID,myCollection); 
} 
G4bool ParisTrackerSD::ProcessHits(G4Step* aStep, G4TouchableHistory * /*touch*/) 
{ 
 // nothing to be stored if no energy  
 G4double edep = aStep->GetTotalEnergyDeposit();   
 if ( edep == 0. ) { 
  return false; 
 } 
 // a new hit is created 
 MySingleHit *newHit = new MySingleHit(); 
 newHit->Edep  = edep; 
 newHit->detID  
= aStep->GetTrack()->GetVolume()->GetCopyNo(); 

 // add this hit to the collection 
 myCollection->insert( newHit );  

 return true; 
} 
void MySD::EndOfEvent(G4HCofThisEvent*){;}

void MyEventAction::EndOfEventAction(const G4Event *evt) 
{  
 MyHitsCollection *THC = NULL;  

 // to get back my collection  
 G4HCofThisEvent * HCE = evt->GetHCofThisEvent(); 
 if (HCE) {  
  THC = (MyHitsCollection *)(HCE->GetHC(0));  
 } 
 if ( THC ) { 
  int n_hit = THC->entries(); 
  for (int i = 0 ; i < n_hit; i++) {  
MyHit *hit= (*THC)[i]; 
G4cout << hit->eDep << " " <<  hit->detID << G4cout;  
  } 
   }   
}

❹

❷ ❸

Sensitive detector, implementation
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Sensitive detectors provided 

A general concrete sensitive detector G4MultiFunctionalDetector* exists
It is a collection of G4VPrimitiveScorer 
    ➥ a G4VPrimitiveScorer class accumulates one physics quantity for each physical volume. Ex:

        Track length: G4PSTrackLength, G4PSPassageTrackLength
        Deposited energy: G4PSEnergyDeposit, G4PSDoseDeposit
        Current/Flux: G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent, G4PSPassageCurrent
        Others: G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

Commands are available:
        /score/dumpQuantityToFile - to dump the result in a CSV (column separated values) file

Geant4 also introduces G4VSDFilter to filter what kind of tracks  is to be 
   considered by sensitivity. Ex, Accepts:

only charged/neutral tracks: G4SDChargedFilter, G4SDNeutralFilter
tracks within the defined range of kinetic energy: G4SDKineticEnergyFilter
tracks of registered particle types: G4SDParticleFilter
tracks of registered particle types within defined range of kinetic: G4SDParticleWithEnergyFilter

* it inherits from G4VSensitiveDetector
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TODO List

• The files containing the definition of aHit and aTracker are provided 
see /group/formateurs/stezowski/utilities

• Integrate them to your application, set the detectors sensitives 
• Run, check how the hit collection is filled and how hits are retrieved 

The user’s application



Conclusions of W4
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We have seen:

•how to extract information 
➥ using user’s hooks
➥ using the detector sensitivity

•There are more advanced levels:
➥ notion of analysis manager: G4VAnalysisManager
➥ one can implement new G4VAnalysisManager 
➥ one can implement new G4VPrimitiveScorer 
➥ one can play with G4VUserXXXInformation*
➥ ...

* XXX being Run, Event, etc ... 


