
Geant4: A Simulation toolkit
O. Stézowski and A. Cazes

With many thanks to the Geant4 community !!!!

The roadmap of the week

W1: installation / running a G4 application

W2: Primary generator, GPS, physics list

NOW, HOW does it really work ?

W4: Sensitive detectors / user’s actions

W3: Geometries !

!2

Do the one
you want to practice on

The user’s application

!3

Building an application requires to put together 3 mandatory bricks*

class ARedSphereConstruction : public G4VUserDetectorConstruction
{
// the virtual method to be implemented by the user
 virtual G4VPhysicalVolume* Construct();
};

class AGammaGun : public G4VUserPrimaryGeneratorAction
{
// the virtual method to be implemented by the user
 virtual void GeneratePrimaries(G4Event* anEvent);
};

class AnElectroMagneticPhysicsList: public G4VUserPhysicsList
{
// the virtual method to be implemented by the user
void ConstructParticle();
// the virtual method to be implemented by the user
void ConstructProcess();
// the virtual method to be implemented by the user
void SetCuts();
};

the detector construction - the description of the physics - the primary generator

+
many other hooks

but
not mandatory

// The User's main program to control / run simulations
int main(int argc, char** argv)
{
// Construct the run manager, necessary for G4 kernel to control everything
 G4RunManager *theRunManager = new G4RunManager();

// Then add mandatory initialization G4 classes provided by the USER
 // detector construction
 // physics list
 // initialisation of the generator

 theRunManager->SetUserInitialization(new ARedSphereConstuction());
.
.
 return 0;
}

W3: Geometries !

Definition of materials

Definition shapes

Volumes - general aspects

Exportation / importation

!4

All bricks together

The user’s application

!5

Requirements to write the method Construct() i.e. the full setup of the simulation

•Construct all necessary materials
•Define shapes/solids
•Define logical volumes
•Place volumes of your detector geometry
•Associate (magnetic) field to geometry (optional)
•Instantiate sensitive detectors/scorers, set them some logical volumes (optional)
•Define visualization attributes for the detector elements (optional)
•Define regions (optional)

Not covered
in this lecture

see workshop #4
Not covered in this lecture

A detector geometry is made of a number of volumes

Geant4 defines two kind of volume

!6

a G4LogicalVolume is used to keep the characteristics of a volume
a G4VPhysicalVolume is used to place (translation, rotation)

a logical volume with respect to a mother volume.

G4LogicalVolume contains:

G4Material [composition]
G4VSolid [shape]

G4VisAttributes [color]
...

G4VPhysicalVolume contains:

G4ThreeVector T
G4RotationMatrix R

copy #

☛ There is a top volume which is called the World Volume !

list of physical volumes
 ...

mother referential

The Construct method of G4VUserDetectorConstruction
returns a G4VPhysicalVolume, the world

W3: Geometries !

Definition of materials

Definition shapes

Volumes - general aspects

Exportation / importation

!7

All bricks together

Construct all necessary materials

!8

Different kinds of materials can be defined:

•isotopes ⬌ G4Isotope
•elements ⬌ G4Element
•molecules ⬌ G4Material
•compounds and mixtures ⬌ G4Material

➥ Attributes associated: temperature, pressure, state, density

• G4Isotope and G4Element describe microscopic properties of the atoms:
 ➥ Atomic number, number of nucleons, mass of a mole, shell energies, cross-sections per atoms ...
• G4Material describes the macroscopic properties of the matter:
 ➥temperature, pressure, state, density
 ➥Radiation length, absorption length, etc...

• G4Material is the only class used and visible to the toolkit:
➥ it is used by tracking, geometry and physics

Construct all necessary materials

!9

Isotopes can be assembled into ...
G4Isotope (const G4String& name,
 G4int z, /* atomic number */
 G4int n, /* number of nucleons */
 G4double a); /*mass of mole*/

G4element (const G4String& name,
 const G4String& symbol, /*element symbol*/

 G4int nIso); /*n. of isotopes*/

... elements

 // Germanium isotopes
 G4Isotope* Ge70 = new G4Isotope(name="Ge70", 32, 70, 69.9242*g/mole);
 G4Isotope* Ge72 = new G4Isotope(name="Ge72", 32, 72, 71.9221*g/mole);
 G4Isotope* Ge73 = new G4Isotope(name="Ge73", 32, 73, 72.9235*g/mole);
 G4Isotope* Ge74 = new G4Isotope(name="Ge74", 32, 74, 73.9212*g/mole);
 G4Isotope* Ge76 = new G4Isotope(name="Ge76", 32, 76, 75.9214*g/mole);
 // germanium defined via its isotopes
 G4Element* elGe = new G4Element(name="Germanium",symbol="Ge", 5);
 elGe->AddIsotope(Ge70, 0.2123);
 elGe->AddIsotope(Ge72, 0.2766);
 elGe->AddIsotope(Ge73, 0.0773);
 elGe->AddIsotope(Ge74, 0.3594);
 elGe->AddIsotope(Ge76, 0.0744);

⎬ Fraction of atoms per volumes

Construct all necessary materials

!10

 density = 2.7*g/cm3;
 a = 26.98*g/mole;
 G4Material *al = new G4Material(name="Aluminium",z=13.,a,density);

 a=22.99*g/mole;
 G4Element *na = new G4Element(name="Sodium",symbol="Na",z=11.,a);
 a=126.90477*g/mole;
 G4Element *i = new G4Element(name="Iodine",symbol="I",z=53.,a);

 density = 3.67*g/cm3;
 nel = 2;
 G4Material *mix = new G4Material(name="NaI",density,nel);
 mix->AddElement(na, natoms = 1);
 mix->AddElement(i, natoms = 1);

 G4Element *c = ... // carbone element
 G4Material *quartz = ... // quartz material
 G4Material *water = ... // water material

 density = 0.200*g/cm3;
 nel = 3;
 G4Material *aerogel = new G4Material(name="Aerogel",density,nel);
 aerogel->AddMaterial(quartz, natoms = 1);
 aerogel->AddMaterial(water, natoms = 1);
 aerogel->AddElement(c, natoms = 1);

 a=14.01*g/mole;
 G4Element *n = new G4Element(name="Nitrogen",symbol="N",z=7.,a);
 a=16.00*g/mole
 G4Element *o = new G4Element(name="Oxygen",symbol="O",z=8.,a);

 density = 1.29*mg/cm3;
 nel = 2;
 G4Material *air = new G4Material(name="Air",density,nel);
 mix->AddElement(n, 0.7);
 mix->AddElement(o, 0.3);

A material made of several elements
(composition by number of atoms)

single element material

A material made of several elements
(composition by of mass)

composition of compound materials

 density = 27.0*mg/cm3;
 temperature = 325.*kelvin;
 pressure = 50.*atmosphere;
 G4Material *co2 =
 new G4Material(name="CarbonicGas",density,nel,
 kStateGas,temperature, pressure);
 co2->AddElement(c, natoms = 1);
 co2->AddElement(o, natoms = 2);

 atomicNumber = 1.;
 massOfMole = 1.008*g/mole;
 density = 1.e-25*g/cm3;
 temperature = 2.73*kelvin;
 pressure = 3.e-18*pascal;
 G4Material *vacuum =
 new G4Material(name="interGalactic",
 atomicNumber,massOfMolde,density,nel,
 kStateGas,temperature, pressure);

Example of materials filled with gas

absolute vacuum does not exist !
Gaz at very low pressure

... elements into materials ...

Construct all necessary materials

!11

Geant4 provides defaults based on the NIST database*

* https://www.nist.gov/pml/atomic-spectra-database

Z A m error (%) Aeff
14 Si 22 22.03453 (22)
 23 23.02552 (21)
 24 24.011546 (21)
 25 25.004107 (11)
 26 25.992330 (3)
 27 26.98670476 (17)
 28 27.9769265327 (20)
 29 28.97649472 (3)
 30 29.97377022 (5)
 31 30.97536327 (7)
 32 31.9741481 (23)
 33 32.978001 (17)
 34 33.978576 (15)
 35 34.984580 (40)
 36 35.98669 (11)
 37 36.99300 (13)
 38 37.99598 (29)
 39 39.00230 (43)
 40 40.00580 (54)
 41 41.01270 (64)
 42 42.01610 (75)

natural isotope compositions
more than 3000 isotope masses

==
 Z Name density(g/cm^3) I(eV)
==
 1 G4_H 8.3748e-05 19.2
 2 G4_He 0.000166322 41.8
 3 G4_Li 0.534 40
 4 G4_Be 1.848 63.7
 5 G4_B 2.37 76
 6 G4_C 2 81
 7 G4_N 0.0011652 82
 8 G4_O 0.00133151 95
 9 G4_F 0.00158029 115
 10 G4_Ne 0.000838505 137
 11 G4_Na 0.971 149
 12 G4_Mg 1.74 156
 13 G4_Al 2.699 166
 14 G4_Si 2.33 173
 15 G4_P 2.2 173
 16 G4_S 2 180
 17 G4_Cl 0.00299473 174
 18 G4_Ar 0.00166201 188

===
Ncomp Name density(g/cm^3) I(eV)
===
 6 G4_A-150_TISSUE 1.127 65.1
 1 0.101327
 6 0.7755
 7 0.035057
 8 0.0523159
 9 0.017422
 20 0.018378
 3 G4_ACETONE 0.7899 64.2
 1 0.104122
 6 0.620405
 8 0.275473
 2 G4_ACETYLENE 0.0010967 58.2
 1 0.077418
 6 0.922582
 3 G4_ADENINE 1.35 71.4
 1 0.037294
 6 0.44443
 7 0.518276

 G4NistManager* man = G4NistManager::Instance();
 G4Material *air = man->FindOrBuildMaterial("G4_AIR");

 /material/nist/printElement

 /material/nist/listMaterials

Many elements defined Many materials provided

C++ G4

https://www.nist.gov/pml/atomic-spectra-database

W3: Geometries !

Definition of materials

Definition shapes

Volumes - general aspects

Exportation / importation

!12

All bricks together

G4VSolid to define the shape

!13

• CSG (Constructed Solid Geometry) solids
G4Box, G4Tubs, G4Cons, G4Trd, ...
• Specific solids (CSG like)
G4Polycone, G4Polyhedra, G4Hype, ...
• BREP (Boundary REPresented) solids
G4BREPSolidPolycone, G4BSplineSurface, ...
Any order surface
•Boolean solids
 G4UnionSolid, G4SubtractionSolid, ...

All kind of shapes in G4 inherits from G4VSolid
It does not include the material
There are different ways to define a 3D shape

G4VSolid to define the shape

!14

G4Box(const G4String &pname, // name
 G4double half_x, // X half size
 G4double half_y, // Y half size
 G4double half_z); // Z half size

Constructed Solid Geometry (CSG) Solids

☛ sometimes center at 0 or not
☛ be careful for exportation ...
☛ sometimes several constructors

G4Tub
G4Cons

G4Torus

G4Sphere

G4Orb

G4Para

G4Trd

G4Trap

G4CutTub

G4VSolid to define the shape

!15

Constructed Solid Geometry (CSG) Solids

 G4Polycone(const G4String& pName,
 G4double phiStart,
 G4double phiTotal,
 G4int numZPlanes,
 const G4double zPlane[],
 const G4double rInner[],
 const G4double rOuter[])

G4Polyhedra

phiStart = 1/4*Pi, phiTotal = 3/2*Pi, numZPlanes = 9,

rInner = {0,0,0,0,0,0,0,0,0}, rOuter = {0,10,10,5,5,10,10,2,2},

z = {5,7,9,11,25,27,29,31,35}

G4EllipticalCone

G4Ellipsoid

G4Paraboloi

G4EllipticalTub
G4Hyp

G4VSolid to define the shape

!16

Constructed Solid Geometry (CSG) Solids

 G4ExtrudedSolid(const G4String& pName,
 std::vector<G4TwoVector> polygon,
 std::vector<ZSection> zsections)

polygon={-30,-30},{-30,30},{30,30},{30,-30},{15,-30},{15,15},{-15,15},{-15,-30}

zsections=[-60,{0,30},0.8],[-15,{0,-30},1.],[10,{0,0},0.6],[60,{0,30},1.2]

G4TwistedBo

G4TwistedTra

G4TwistedTrd

G4Tet

G4GenericTrap

G4VSolid to define the shape

!17

BREP (Boundary REPresented) Solids
• Listing all its surfaces specifies a solid
e.g. 6 planes for a cube
• Surfaces can be
planar, 2nd or higher order
☛ elementary BREPS
Splines, B-Splines, NURBS (Non-Uniform B-Splines)
☛ advanced BREPS
• Few elementary BREPS pre-defined
box, cons, tubs, sphere, torus, polycone, polyhedra
• Advanced BREPS built through CAD systems

 G4BREPSolidPCone(const G4String& pName,
 G4double start_angle,
 G4double opening_angle,
 G4int num_z_planes, //sections,
 G4double z_start,
 const G4double z_values[],
 const G4double RMIN[],
 const G4double RMAX[])

G4VSolid to define the shape

!18

Boolean Solids

Solids can be combined using boolean operations:
G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
☛ Requirements: 2 solids, 1 boolean operation, and an (optional) transformation for the 2nd solid
☛ 2nd solid is positioned relative to the coordinate system of the 1st solid
☛ Result of boolean operation becomes a solid. Thus the third solid can be combined to the resulting
solid of first operation.

Solids to be combined can be either CSG or other Boolean solids.

Note: tracking cost for the navigation in a complex Boolean solid is proportional to
the number of constituent CSG solids

2

1

2

G4UnionSolid G4SubtractionSolid G4IntersectionSolid1

G4VSolid to define the shape

!19

Boolean Solids

G4VSolid* box = new G4Box(“Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder = new G4Tubs(“Cylinder”,0.,50.*cm,50.*cm,0.,2*M_PI*rad);
G4VSolid* union
 = new G4UnionSolid("Box+Cylinder", box, cylinder);

G4ThreeVector T(30.*cm,0.,0.);
G4VSolid* subtract
 = new G4SubtractionSolid("Box-Cylinder", box, cylinder,0, T);

G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4ThreeVector Tr(0.,0.,0.);
G4VSolid* intersect
 = new G4IntersectionSolid("Box&&Cylinder", box, cylinder, rm, Tr);

With all the possibilities proposed in Geant4 to build shapes
there are probably several ways to define a complex geometry
 ➥ be careful if you would like to export it ! [see gdml section]

W3: Geometries !

Definition of materials

Definition shapes

Volumes - general aspects

Exportation / importation

!20

All bricks together

How to define the World Volume

!21

 G4NistManager *man = G4NistManager::Instance();
 G4PVPlacement *matWorld = man->FindOrBuildMaterial("G4_AIR");

 // use a physical as a container to describe the detector
 detWorld = new G4Box("BWorld",10.*m,10.*m,50.*m);
 detlogicWorld = new G4LogicalVolume(detWorld, matWorld, "LWorld", 0, 0, 0);

 detlogicWorld->SetVisAttributes(G4VisAttributes::Invisible); // hide the world

 // Must place the World Physical volume unrotated at (0,0,0).
 thePhysWorld = new G4PVPlacement(0, // no rotation
 G4ThreeVector(), // no translation
 detlogicWorld, // its logical volume
 "PWorld", // its name
 0, // its mother volume
 false, // no boolean operations
 -1); // copy number

material

Shape

➥ Logical world is a box made of air ... it is also hidden ...

Place the World,
No mother,
No rotation

No translation

Adding daughter volumes to the World

!22

• A volume is placed in its mother volume
 ☛ Position, rotation of the daughter is described with respect to the local coordinate system of the mother
 ☛The origin of the mother's local coordinate system is at the center of the mother volume
 ☛ Daughter volumes cannot protrude from the mother volume, Daughter volumes cannot overlap
 ➥ User’s responsibility to check this, some tools are provided
➻ graphical widows [hepRApp, Qt]

➻ dedicated commands

• The logical volume of mother knows the daughter volumes it contains
 ☛ It is uniquely defined to be their mother volume

• One logical volume can be placed more than once. One or more volumes can be placed in a mother volume

• The mother-daughter relationship is an information of G4LogicalVolume
 ☛ If the mother volume is placed more than once then
 all daughters by definition appear in each placed physical volume

• The world volume must be a unique physical volume, it fully contains (with margin) all the other volumes
 ☛ The world defines the global coordinate system, which origin is at the center of the world volume
 ☛ Position of a track is given with respect to the global coordinate system

/geometry/test/run or geometry/test/grid_test 
check for overlapping regions based on a standard grid setup, limited to the first depth level  
/geometry/test/recursive_test 
applies the grid test to all depth levels (may require lots of CPU time!)

/geometry/test/line_test 
to shoot a line along a specified direction and position

/vis/ASCIITree/verbose 11  
/vis/drawTree

!23

There are different ways to create physical (placed) volumes

Daughters of same shape are aligned along one ‘axis’ and fill the mother.

There can be gaps between mother wall and outmost daughters.

No gap in between daughters ... G4ReplicatedSlice ...

Daughters of same shape are aligned along one ‘axis’

Daughters fill the mother completely without gap in between.

A volume instance positioned once in its mother volume

Reduction of memory consumption

Currently: parameterization can be used only for volumes that either  
 - have no further daughters,  
 - are identical in size,shape (so that grand-daughters are safely fit inside)

+ G4AssemblyVolume:
 to make snapshot of a complex volume at given position,rotation
+ G4ReflexionFactory:
 a pair of volume, useful typically for end-cap calorimeter

Adding daughter volumes to the World

!24

Adding daughter volumes to the World

 // Now add a blue cube to the world
 G4Box *asolidBox;
 G4LogicalVolume *alogicBox;
 G4VPhysicalVolume *aphysiBox;
 G4VisAttributes *visatt;

 asolidBox = new G4Box("BlueCube",Side/2.,Side/2.,Side/2.);
 alogicBox = new G4LogicalVolume(asolidBox, CubeMaterial, "LBlueCube", 0, 0, 0);

 // the cube is blue
 visatt = new G4VisAttributes(G4Colour(0.0, 0.0, 1.0));
 visatt->SetVisibility(true);
 alogicBox->SetVisAttributes(visatt);

 aphysiBox = new G4PVPlacement(
 0, // no rotation
 G4ThreeVector(X_Center, Y_Center, Z_Center), // at (X_Center,Y_Center,Z_Center)
 alogicBox, // the blue cube logical volume
 "PBlueCube", // the physical blue cube name
 logicWorld, // its mother volume
 false, // no boolean operations
 0); // copy number

last workshop #4

magnetic fields

last workshop #4

user’s limits

W3: Geometries !

Definition of materials

Definition shapes

Volumes - general aspects

Exportation / importation

!25

All bricks together

!26

GDML: exportation / importation

 Geometries can be saved in XML (gdml) files
 XML is widely used in computer applications since:
➥ it is human readable (html like)
➥ it is structured, with ways to check the schema is correct
➥ the schema is defined consistently using xml language!
➥ GDML* is an extension for 3D geometries

☛ It is a format to exchange geometries between framework
☛ BUT it could also be used to define new geometries

 (without C++ knowledge)

* Geometry Description Markup Language

human readable !

☛ GDML is also the bridge to import CAD files ...

!27

define gdml schema

Shape

LogicalVolume

PhysicalVolume

Translation, rotation if any

the top volume, the World !

GDML: exportation / importation

http://lcgapp.cern.ch/project/simu/framework/GDML/doc/GDMLmanual.pdf

http://lcgapp.cern.ch/project/simu/framework/GDML/doc/GDMLmanual.pdf

!28

GDML: exportation / importation

 #include "G4GDMLParser.hh"

 ...

 G4VPhysicalVolume *world; // this is the world
 ...

 G4GDMLParser parser;
 // write
 parser.Write("myGDML.gdml",world,false);

export the world from G4 into a gdml file

 #include "G4GDMLParser.hh"

 ...

 G4VPhysicalVolume *world; // this is the world
 G4GDMLParser parser;
 parser.Read("myGDML.gdml",false);

 world = parser.GetWorldVolume();

import the world into G4 from a gdml file

ROOT reads GDML files
only if

gdml module is compiled

Attributes (colors, sensitivity ...) are not saved in gdml files ... there are way to pass the information

It
 re

qu
ir

es

G
ea

nt
4

G
D

M
L

m
od

ul
e

!

!29

TODO List

• Build the following setup:
The World is composed of air.
The setup is a target composed of lead, placed at center of the World:

target [box 10cm cube]
And three detectors composed of BGO, placed at 60 cm from the target:

a box [10 cm square, 5 cm depth] in the beam direction
a tube detector 5cm radius, 10cm long rotated by 60 degrees with respect to the beam direction

a trapezoid detector, face 5cm2, back 15cm2 depth 10cm rotated by -60 degrees with respect to the beam direction

• Modify the main program to save the geometry in a .gdml file
load the geometry in root and check it

• Built your own detector !

The user’s application

!30

The user’s application
In G4, using QT

In root, after gdml exportation

Conclusions of W3

!31

We have seen:

•how to build a geometry
➥ from isotopes to materials
➥ from shapes by logical volumes to physical volumes

•how to use check the geometry validity
➥ command line
➥ using Graphical tools including export / import

•More information could be added to geometries
➥ one can make some sensitive
➥ copy number is important ⎬ see last workshop !

