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Summary/Recap Lecture 2

➔ Unsupervised learning for clustering,
dimensionality reduction, density estimation and
generative models

➔ Supervised learning for regression and
classification

➔ Artificial neural network are in rapid evolution.
Methods providing lots of flexibility and at the
forefront of performance on many complex tasks



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

105



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

106

Lecture - Part 3/3
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Cutting Edge Technique : Outline

● Generative Models
● Nuisance parameters
● Graph Networks
● Information Representation
● Control Learning
● Neuromorphic Computing
● Quantum Machine Learning
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Generative Models
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(Generative) Adversarial Models

1609.04802

1703.10593

1705.09368

1612.03242v1
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3D GAN

See S. Vallecorsa's seminar for details
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Calo GAN

● Model conditioned on energy
● Successive layers conditioned on

previous ones
● Fair agreement over shower shape

variables
● Tremendous speed up over generation

Calogan 1712.10321 

generator

discriminator
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NADE
● Neural Auto-Regressive Density Estimator (NADE) is a family of

models for learning the pdf of the input dataset
● Relies on the the probability chain rule
● Modeling conditional probabilities as a mixture model (e.g Gaussian)

x≡(x1, x2, ... , xD) ; P (x)=∏
d=1

D

p(xd∣x <d )

p(xd∣x<d )≡M (xd ,θd) where θd≡ f (x <d )
Loss(x)≡−log P (x)

Loss=− 1
N ∑

i
∑

d
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NADE 1605.02226 
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Variational Auto-Encoder

variational
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Normalizing Flow
● Variational model with normalizing flow are very similar to variational

auto-encoder, in which the latent variable distribution is
approximated by normalizing flow

● Normalizing flow is a technique to evolve a probability distribution
through a sequence of invertible transformations

loss(x i)=−DKL [ q(z∣xi)∥Gauss (0,1) ]
+E q(z∣x i) [ log p(x i∣z) ]
q(z∣xi)∼ ∘

t
f k ( z)∣x i

Norm-flow VAE 1505.05770
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Systematic Uncertainties
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Learn Against Nuisance
● Several proposed method to combat the impact of certain

source of systematic uncertainties on the model performance

Parametrized learning 1601.07913

Learn to pivot 1611.01046 
Domain adaptation 1409.7495

inferno 1806.04743 
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Inference Aware Training

inferno 1806.04743 

● The classification model derived for an analysis is often
subject to systematic uncertainty due to physics
parameters model

● In cases where the simulation is differentiable with
respect to that parameter : model can be made more
robust against such uncertainties
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Parametrized Learning
● Often confronted with signal samples over a parameter scan

(mass of a particle, coupling, … )
● Training a model for each sample or a mixture of all samples is not

optimal
● Parametrized learning uses the parameter as an additional input
● Model exhibit good interpolation properties
● Can be marginalized later-on

Parametrized learning 1601.07913
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Adversarial Training
● Model can develop internal representation related to physical

quantities and use this to perform the classification
● This bias toward the physical quantity might be damaging in

sub-sequent data analysis
● Addition of an adversarial network helps in reducing the bias

L(x i , y i)→ L( x i , y i)−λ Ladversary( x i , y i)

Learn to pivot 1611.01046 
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Gradient Reversal

Domain adaptation 1409.7495

● Demonstrated in the context of domain adaptation
➢ Labelled training set is available
➢ Unlabelled dataset, from different environment to be classified

● Final model performs classification over the unlabelled dataset
● Labelled : simulation, unlabelled : data
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Graph Network
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Graph Neural Network

● Relational data can be represented on a
directed/undirected graph

● Operations on graph can mostly be represented with
matrix operations

● Advantage over sequential representation when
relation is not linear

● Adapted to social network analysis
● Dimensionality can be an obstacle
● Field of deep learning in development 

https://github.com/deepmind/graph_nets  

x →( x , A)
s.t. Aij=1if i connects to j

https://github.com/deepmind/graph_nets
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Graph Network

Pile-up with gnn 1810.07988 

● Model node and edge with internal representation
● Learn edge representation
● Propagate information through the graph (message passing)

back and forth between edges and nodes
● Iterate the procedure to distill information
● Extract information relevant to the problem, per edge or per

node

Tracking with gnn 1810.06111
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Interaction Network

Interaction Networks for Learning about
Objects, Relations and Physics
P. W. Battaglia, R. Pascanu, M. Lai, D.
Rezende, K. Kavukcuoglu
https://arxiv.org/abs/1612.00222 

● Learning the relation between
particles (gravity, spring, wall,
…)

● Learn the dynamics of the
system and predict future
evolution

https://arxiv.org/abs/1612.00222
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Interaction Network For Jet Id

Inspired from https://arxiv.org/abs/1612.00222 

jet

particle

https://arxiv.org/abs/1612.00222
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Information Representation
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Probabilistic Hashing
Anshumali Shrivastava, Rice University

➔ Introduced properties of hashing 
➔ Relates to their work on anomaly detection : 

https://arxiv.org/abs/1706.06664 
➔ Hashing in neural net training same perf much less computation

https://arxiv.org/abs/1706.06664
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Network Compression
● Redundancy in network weights once trained is a known

phenomenon
● Very important when application is time/computing critical

inference
➢ Cell phone app, self-driving, trigger, … 

● Quasi loss-less compression

hls4ml 1804.06913
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Adversarial Examples
● The loss function L of a model drives the optimization of the

model to assign input x to the correct label y
● Possible to alter a given input by gradient descent to classify

with a different class
● “Universal” adversarial example build from the gradient of the

loss function with respect to the input
● Model can be trained with a corresponding regularizing term
● Puzzling observations. Little risk in physics analysis.

sign(∇ x L(θ , x , y))
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(Lack of) Interpretability 

Pietro Perona, DSHEP, 2017
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Interpretability
● Trained convolution layers correspond to templated filters

applied to input images
● Insightful to create artificial data that maximize a filter

activation :
● Can be done with gradient ascent from random input

x ← x+η∇ x ai , l (x)

ai , l (x)
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Information Flow

N. Tishby, HUJI

I ( X ,Y )=H ( X )−H ( X∣Y )

I ( X ,Y )=∑
y
∑

y

p (x , y) log (
p(x , y)

p(x) p( y)
)
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Embedding Symmetries

T.S. Cohen, M. Welling ICML2016

p4m
group

p4
group

HexaConv 1803.02108

● Translation invariance brought
convolutional layers

● Training with further knowledge of
invariance brings improvements

● Including domain knowledge on how
object transform brings improvements

LOLA 1707.08966 
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Challenge in Natural Ordering
Text have natural
order. RNN/LSTM
can correlate the
information to
internal
representation

There is underlying
order in collision
events. Smeared
through timing
resolution. No natural
order in  observable

➢ Learn how to sort
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Learn How To Sort

Sorting and “soft” sorting models can be
concurrently trained with recurrent networks
Expensive and tricky to train
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Anomaly Detection
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Anomaly Detection

● An observation which deviates so much from other
observation as to arouse suspicion that is was generated
by a different mechanism [Hawkins D.]

● Examples in banking fraud detection, computing system
security, network intrusion, …

● Requires a probabilistic model of what the usual data is
➢  ν-SVM (one-sided SVM), auto-encoder, density

estimator, …
● In practice, one can derive a model to guide further data

analysis : i.e. trigger human intervention
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Topology Classification

https://arxiv.org/abs/1807.00083

● Various approaches on the benchmark
● AI still needs the physicist's derived features
● Quasi unbiased x10 rejection factor on background triggers

https://arxiv.org/abs/1807.00083
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Outlier Identification
● Train a NADE (https://arxiv.org/abs/1306.0186 ) model on

mixture of the known backgrounds
● Use a synthetic dataset with small injected unknown signature
● Log density singles out the injected signal

Signature unknown to
the model

https://arxiv.org/abs/1306.0186
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New Physics Triggering

● Variational Autoencoder
(VAE) trained on the major
background of a trigger line

● Model is used to identify
unknown signatures
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Control Learning
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Reinforcement Learning
● Supervised learning with objective provided by an environment 
● Computational intensive optimization problem 

➢ p-Learning : modeling/optimize the action/policy
➢ Q-learning : modeling/optimize the action-value function

● Requires either an environment or a simulator to compute reward

π(a∣s)=P (At=a∣S t=s)
argmax

π
E [∑t

γt Rt∣S 0 ]
V π(s)=Eπ [∑k

γk Rt+k∣S t=s ]
Q (s , a)=Eπ [∑k

γk Rt+k∣S t=s , At=a ]
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Active Learning
● Semi-supervised technique to tackle the problem

of unlabelled dataset
● The model provides the unlabelled samples

most relevant to the classification convergence  

Average labor fraction

Accepting 1% data loss
could  save 40% of the
workload on the
certification team
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Probabilistic Programming
● Instrumenting computer program with control over

probabilistic variables :
● Provides efficient tools for inferring the conditional probability

of model parameters, given a set of observation

P (model∣X )=
P ( X∣model ) P (model )

P ( X )

X → P ( X )
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Neuromorphic Computation
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Spiking Neural Network
● Closer to the actual biological brain
● Adapted to temporal data
● Hardware implementation with low

power consumption  
● Trained using evolutionary algorithms
● Economical models 
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Neuromorphic Hardware

http://www.nature.com/articles/srep14730 

● Implementing plasticity in hardware 
● Process signal from detector and adapt to categories of pattern

(unsupervised)
● Post-classified from data analysis or rate throttling
➢ NCCR consortium assembling to develop this technology further,

with our use case in mind 

http://www.nature.com/articles/srep14730
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Cognitive Computing

● Spiking neural net as processing units : 
➔ Cognitive Computing Processing Unit : CCPU

● Adopt a new programming scheme, translate existing
software
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Neutrino Identification with SNN

https://indico.fnal.gov/event/13497/contribution/0
 

https://indico.fnal.gov/event/13497/contribution/0
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Quantum Algorithms
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Quantum Machine Learning
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QAML Weak/Strong Classifier

Define functions h
i
 of the

input variables into [-1,1]
such that 
➢ P(signal|h>0) > P(bkg|h>0)
➢ P(bkg|h<0) > P(signal|h<0)

i.e. Most signal on h>0, most
bkg on h<0

Define w
i
 as binary linear

combination of h
i

https://arxiv.org/abs/1109.0325 

https://arxiv.org/abs/1109.0325
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QAML Target/Objective
Define as a “target” function

Per event error

Full error

➔ C
ij
 and C

iy
 are summations over the values of h

i
 over the training set

➔ λ is a parameter penalizing the number of non-zero w
i
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QUBO
Quadratic Unconstrained Binary Optimization

Simple conversion 
of binary 

weights to ±1
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QAML for HEP

DW & SA

DNN & XGB
Hγγ classification problem
Two components in the error
band.

1.Stat error of the test set.
2.Spread over the folds.
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Summary/Recap Lecture 3

➔ The field of machine learning is still in evolution

➔ The field of deep learning is in exponential
evolution

➔ There is much more than regression and
classification

➔ There is more than artificial neural networks 

➔ Experimental field where the scientific method of
a physicist can make a difference
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Final Remarks

● Many thanks to the organizers of the school for the
invitation to give this lecture series. 

● Relevant credits go to Y. Le Cun, G. Louppe, M. Kagan,
A. Rogozhnikov, A. Artemov for the past lectures I have
inspired myself with.

● Thanks to M. Pierini for reviewing the content of the
lecture and providing feedback.
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Extra Slides
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Books
● Statistical analysis techniques in particle physics, I. Narsky, F. Porter
● Deep Learning, I. Goodfellow, Y. Bengio, A. Courville

Lectures
● M. Kagan https://indico.cern.ch/event/619370/ 
● http://comet.lehman.cuny.edu/owen/teaching/datasci/sp2017.html

Conference Series
● Data-science-HEP Series http://dshep.fnal.gov/ 
● MLHEP series https://indico.cern.ch/event/687473/  

https://github.com/yandexdataschool/mlhep2018 
● https://dl4physicalsciences.github.io/
● https://indico.fnal.gov/event/ANLHEP1017/

Article and blogs
● Machine learning at the energy and intensity frontiers of particle physics 

https://www.nature.com/articles/s41586-018-0361-2 
● http://www.shivonzilis.com/machineintelligence
● https://www.nvidia.com/en-us/deep-learning-ai/
● http://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
● http://ruder.io/optimizing-gradient-descent/
● http://colah.github.io/posts/2015-08-Understanding-LSTMs/
● https://indico.cern.ch/event/737584/contributions/3105461/ 
● https://medium.com/@jonathan_hui/

References

https://indico.cern.ch/event/619370/
http://comet.lehman.cuny.edu/owen/teaching/datasci/sp2017.html
http://dshep.fnal.gov/
https://indico.cern.ch/event/687473/
https://github.com/yandexdataschool/mlhep2018
https://dl4physicalsciences.github.io/
https://indico.fnal.gov/event/ANLHEP1017/
https://www.nature.com/articles/s41586-018-0361-2
http://www.shivonzilis.com/machineintelligence
https://www.nvidia.com/en-us/deep-learning-ai/
http://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
http://ruder.io/optimizing-gradient-descent/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://indico.cern.ch/event/737584/contributions/3105461/
https://medium.com/@jonathan_hui/
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3D Calorimetry Imaging

100GeV
Photon

100GeV
Pi0

≠
LCD Calorimeter configuration
http://lcd.web.cern.ch
5x5 mm Pixel calorimeter
28 layer deep for Ecal
70 layer deep for Hcal

Using the raw cell information
➔ Particle classification 
➔ Energy regression

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf 

http://lcd.web.cern.ch/
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
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HEP.TrkX Approaches

Seq-to-seq track finding

https://tinyurl.com/y87saehf 

https://tinyurl.com/yb3v93y9 

End-to-end hit assignment

Track following with RNN https://heptrkx.github.io/ 

Pilot project funded by DOE ASCR and COMP HEP. Part of HEP
CCE. LBNL, Fermilab, Caltech consortium

https://tinyurl.com/y87saehf
https://tinyurl.com/yb3v93y9
https://heptrkx.github.io/
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Internal Node Activation

● Any function with a derivative may work
● Many activation to pick from (and there are more, like cos, ...)
● Sigmoid, tanh suffer from vanishing gradients : slow convergence
● Relu and PRelu solve some of the vanishing gradient issue, and

accelerate computation
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Regularization

● “With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.” John Von Neumann

● Add terms in the loss function to reduce the amount
parameter actively used

● Prevents overfitting the data and improves generalization
● Caveat : regularization strength needs to be tuned

Regularized 
polynomial fit
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Early Stopping

● Even regularized infinite training might lead to overfitting
● Loose generalizing power
● Stop training when generalization performance stabilizes
● Be careful of “choppy” test error, needs averaging
● Bias towards the test sample is minimal. However better to

do it on a fraction of the train sample
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Batch Size

● Batch≡“stochastic” in stochastic gradient descent
● Batch size = 1 

➢ Weights move too much towards each sample
➢ Noisy gradients
➢ Computationally expensive

● Increasing batch size 
✔ Speed up by using parallelism
✗ Slow down due to lack of update cycle

● In theory, would need to be tuned
➢ Not practical as one of the aspect is speed-up
➢ Can be optimize with a couple of epochs based on ∆loss/s

metric
● Often does not have a effect on converged model
● Adaptive batch size https://arxiv.org/abs/1712.02029 can

bring faster convergence

https://arxiv.org/abs/1712.02029
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K-Folding

● Model selection requires to have an estimate of the
uncertainty on the metric used for comparison

● K-folding provides an un-biased way of comparing models
● Stratified splitting (conserving category fractions) protects

from large variance coming from biased training

http://scikit-learn.org/stable/modules/cross_validation.html 

http://scikit-learn.org/stable/modules/cross_validation.html
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Loss Function

● Any differentiable function can define the loss function
● Canonical functions

● Categorization : https://arxiv.org/abs/1702.05659 
binary cross entropy for binary classification
categorical cross entropy for >2 category

● Regression : 
mean squared errors (mse) is common

● Choice of the loss implies an assumption on the distribution
of the data and how loosely similar a pair of sample are

● Any loss definition over a training batch is allowed
● Can consider combining neural net outputs into a loss

without having a target value for each output 

https://arxiv.org/abs/1702.05659
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Optimizer

● Loss function has a highly non convex high dimension landscape
● Presence of multiple saddle points and local minimum
● Simple SGD (gradient average over batch) converges poorly on

complex models
● Varieties of optimizer, with various characteristics 

http://ruder.io/optimizing-gradient-descent/ 
● Best practice is use Adam, with tuning of learning hyper-parameters

http://ruder.io/optimizing-gradient-descent/
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GP-GPU
https://sites.google.com/site/computationvisualization/programming/cuda/article1 

● CPU : optimized for multiple different sequential operations 

● GPU : optimized for multiple identical parallel operations

CPU hardware are bridging the gap somehow (e.g KNL)
GPU are exponentially growing in FOPS 

➔ P100 : 21 ½, 10 single, 5 ddouble TeraFLOPS

➢ Most operations in training neural net are naturally parallel
and therefore particularly suited for computation on GPU 

https://sites.google.com/site/computationvisualization/programming/cuda/article1
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Brain Inspiration

≠
https://arxiv.org/abs/1409.4842 

 ANN are brain-
inspired, but have no
biological analogy

 Spiking neural nets
are closer to reality

https://arxiv.org/abs/1409.4842
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https://www.dwavesys.com/  
1999 Founded 
2011 D-Wave One : 128 qubits
2013 D-Wave Two : 512 qubits
2015 D-Wave 2X : 1000 qubits
2017 D-Wave 2000Q : 2000 qubits
2019? 5000 qubits ?

The D-Wave Company

https://www.dwavesys.com/
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D-Wave 2XTM

1098 qubits
Operates at 15mK
Anneals in 5-20 μs
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qubit and qubit

Quantum Circuits
Series of quantum gates

operating on a set of
quantum states.

Quantum Annealing
Evolution of a quantum

system to a low T Gibbs state
That's D-Wave !
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D-Wave's quBit

https://doi.org/10.1109/TASC.2014.2318294 

● Each qubit is a pair of
Josephson junction (JJ)

● Able to apply local
magnetic fields with
programable digital-to-
analog flux converters
(DAC)

● Operates at 15 mK to
remove noise

https://doi.org/10.1109/TASC.2014.2318294
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Thermal Noise Isolation
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Working on a D-Wave

● Web Interface to post the
problem settings (Hp).

● Asynchronous processing.
● Solution is made available

for download.

● Distributed library for
performing embedding

➢ Retain full intellectual
property.

● Equivalent restapi to submit
and retrieve solutions

➢ D-Wave processor as a
service
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DL and Quantum Entanglement
Yoav Levine , Hebrew University 

➔ ConvAC : Convolutional arithmetic circuit (a specific NN architecture)
➔ Equivalence to many-body quantum wave function : loosely  used IMO
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Expressiveness of Deep Networks
Amnon Shashua, HUJI

➔ ConvAC : Convolutional arithmetic circuit (a specific NN architecture)
➔ Theoretical proof of intuitive behaviors when changing NN architectures
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group 0, subrank 0

Training worker
group 0, subrank 1

Training worker
group 0, subrank2

Training worker
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● One master process drives the hyper-parameter optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

Batch Distribution
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● One master running the optimization. Receiving the average  figure of merit over N
F
 

folds of the data
➢ N

G
 groups of nodes training on a parameter-set on simultaneously

➢ N
F
 groups of nodes running one fold each

K-folding Layout



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

183

H-opt
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

TW0
GPU2

TW1
GPU2

TWN
W

GPU2

Training master
group 0, subrank 0
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● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training worker groups

● N
GPU

 used for each worker group (either nodes or gpu)

Gradient Distribution
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Model Parallelism

GPU2GPU1

● Perform the forward and backward pass of sets of layers on different
devices

● Require good device to device communication
● Aiming for machines with multi-gpu per node topology (summit)
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