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Summary/Recap Lecture 1

➔ Machine Learning is tightly coupled to an
optimization problem

➔ Checking variance in model performance is
extremely important

➔ Large model require lots of data 

➔ Assembling models yields better performance
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Lecture - Part 2/3
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Unsupervised Learning
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Unsupervised Learning : outline

● We are given a dataset, and no ground
truth/label/target

● No objective function either
● Aim is at finding structure, similarities, trend, …

● Most common applications
➢ Dimensionality reduction
➢ Clustering
➢ Anomaly detection
➢ Generative model
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Dimensionality Reduction



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

65

Dimensionality Reduction

● In the context of machine learning, the dimensionality
of the input can be a showstopper computationally

● The input data dimensionality (number of pixels in the
image) is usually much bigger than the dimension of
the manifold where information lives

● Find a lower dimension representation of the data
➢ PCA
➢ Auto-encoder
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Principal Component Analysis

S= 1
N
∑
i=1

N

(x i− x̄)
2

● Generally useful in data pre-processing
● The method aims at finding a new basis of the data in which

components have maximal and decreasing variance
● The eigendecomposition of the covariance matrix provides this

new basis. Composed of the first eigenvectors in decreasing order
of the eigenvalues.

● Numerically straight forward since S is positive definite

u=Uxwith S=U [λ1 0
⋱

0 λn ]U−1

and λi⩾λ j for i⩽ j
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Auto-Encoder

● Learning the identify function through an encoder and a decoder
● Multiple possible usage

➢ Clusterization, using distance in the compressed representation
instead of original input space

➢ Anomaly detection using find outliers in the internal representation
➢ De-noising model, by training on noisy input and de-noised output
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Embedding
● Embedding is a mapping from input space to real valued tensor
● Learned as part of the model, or as a standalone task

word2vec 1301.3781 QCD-aware jet embedding
1702.00748 
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Clustering
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Clustering
● Problem statement : are there different populations of

samples in the dataset, where a population is a subset
of samples similar among themselves, with a given
metric of similarity

● A natural choice of similarity on real valued tensors is
the euclidian distance, but any metric can be specified

● Clustering can be done on the raw data, embedding
data, or compressed representation

● Several popular methods
➢ K-means
➢ DBScan
➢ Self-organizing map (SOM)
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K-Means
● Assume a number of clusters K originally positioned at random

in feature space 
● Assign each data point to the nearest cluster, according to the

chosen metric D

● Update the cluster position in feature space, once all samples
are assigned

✔ Repeat until cluster positions are not changing significantly
✔ Predefined value of K can be obtained with optimization 

k i=arg min
k

D (x i ,μk )

μk=
1
nk
∑
i∈C k

x i

μk for C k
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Hierarchical Agglomerative Cluster
● HCA is an algorithm that provides a dendogram over the

dataset provided a distance
● In each branch of the tree samples are closer to each other

then samples in the other branch
● Each horizontal cut of the tree provides a clustered view of the

sample
● Computationally intensive if no adjacency provided



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

73

DBSCAN
● Density-based spatial clustering of application with noise

(DBSCAN) is not making assumption on the number of
clusters, and can define outliers.

● For each data point find all points within a certain distance
(proximity parameter) and grow clusters by vicinity if sufficient
neighbors (population parameter)

● Performance depends on the choice of parameters. Should be
optimized according to an extra figure of merit
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Self Organizing Map
● Kohonen network, or SOM use internal representation

(usually 2D for visualization purpose, but not limited to)
to encode the content of the training dataset

● Internal representation are pulled towards data input,
within the neighborhood of the node most similar to the
presented sample

➢ Useful in visualization
➢ Conserve topologies from data
➢ Used for clustering
➢ Can find similarities between

samples in the data
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Density Estimator
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Density Estimator
● Further than clustering, one may want to learn the

structure of the full dataset and have an estimate of the
similarity of unseen samples to the original dataset

● In the limit of infinite number of clusters, the fine grained
description of the full population is learned

● An accurate model of P(X) provides de-facto a
generative model if sampled properly

● Present here advanced methods, with specific
applications in mind
➢ Mixture of Gaussians
➢ NADE
➢ Generative models
➢ Variational Auto-Encoder
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Mixture of Gaussians
● Mixture of Gaussian provides a smooth modeling
● Tractable recursive training with expectation maximization (EM)
● Model can be used to generate new sample
● Initialization comes naturally from z-means

P (x∣θ)=∑
k

αk pk (x∣θk )

pk ( x∣θk )=
1

(2π)d /2∣Σk∣
1/2 e

−1
2
( x−μk)

T Σk
−1(x−μk)

ωik=
pk (x i∣θk)αk
∑
m

pm(x i)αm
, N k=∑

i

ωik

μk←μk
new= 1

N k
∑
i

ωik x i

Σk←Σk
new= 1

N k
∑
i

ωik (x i−μk
new)(x i−μk

new)T
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Generative Adversarial Network
● GAN are composed of two elements

competing with each others
➢ A generator : the role of which is to

produce samples as if they were drawn
from the original dataset

➢ A discriminator : the role of which is to
distinguish between a real sample and a
generated sample

Data
Generator
disctriminator

GAN 1406.2661

Training
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DCGAN
● Generator produces samples in feature space
● Discriminator classifies real vs fake

min
D
max
G
Lossdata / fake

Loss=− 1
m∑i [ logD ( xi)+log (1−D (G ( z i))) ]

D←D−η∇D Loss
G←G+η∇G Loss
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W-GAN
● 1st Wasserstein distance a.k.a Earth mover's distance (EMD) is a

measure of similarity of probability distribution function

● EMD is intractable for optimization
● EMD can be approximated using the critics, and   

EMD( p ,q)≡W ( p ,q)=inf
γ
E( x , y)∼γ [∥x− y∥]

s.t.γX= p ;γY=q
in γ(x , y)=γX∣Y (x∣y)γY ( y)=γY∣X ( y∣x)γX (x) ,

∇θW (data , fake)=−E z∼ p( z) [∇θC (gθ(z ))]
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Variational Auto-Encoder

variational
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Gradient Descent on VAE

loss(x i)=−DKL [q(z∣xi)∥Gauss (0,1) ]+E q(z∣x i) [ log p(x i∣z) ]

● The output of the model in the latent space and reconstructed
space are mixtures of Gaussians distributions q (enc) and p
(dec) respectively

● The loss function, per input sample, provides 
➢ Measure of reconstruction self consistency
➢ Measure of compatibility between latent distribution and unit

gaussian
● Gradient of the KL divergence between two multivariate

Gaussians is analytical
● Gradient of expectation term simplified using the

reparametrization trick, and evaluated using a single sample 
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Supervised Learning
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Supervised Learning : Outline
● Provided a dataset with input quantities, and quantities(target)

one wishes to be able to predict

● y is within a finite set : classification
● y is a continuous : regression

● N.B. A regression and be binned and casted in a
classification problem

● Looking at the most commonly used algorithms
➢ Decision Tree
➢ Gaussian processes
➢ Support Vector Machine
 Artificial Neural Network

 Embeddings
 Convolutional Layers
 Recurrent Neural Network
 Dense Connections

{x i , y i }→ y≡h(x)
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Decision Tree

● Decision trees is the most known tool in supervised learning.
● It has the advantage of being easily interpretable
● Can be used for classification or regression
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Growing Decision Tree
● Decision trees are grown recursively using an impurity metric

(entropy, gini, error, ...)
● At each iteration dataset's splits are enumerated and the one

with the largest the impurity gain is selected
● Stopping mechanism based on tree depth, population in

leaves, number of leaves, ...
● Branches and leaves subject to pruning for further

improvement

s≡x j s⩾c s⇒ t0→(tL , tR)

I (t)=Φ({pk≡
N k , t
N t
}
class k

)

Δ I (s)=
N t 0
N
I (t0)−

N t L
N
I (t L)−

N t R
N
I (tR)

st=arg max
s

Δ I (s)
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Decision Tree Impurity

Φgini=1− p
2−q2

Φxe=−( p log( p)+q log (q) )
ΦE=1−max ( p ,q)

● Algorithm is generic and only relies on the impurity function
● Various possible choices for categorization and regression

Categorization

Regression

ΦSE (t )≡var
t
( yi)

2= 1
N t
∑
i∈t

( y i−c l )
2

with cl=∑
i∈t
yi
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Gaussian Processes
A Gaussian process (GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

● In 2-d, it can be visualized as a family of functions y,σ = f(x) where
one defines 

➢ Setting the expectation and how values correlate as a
function of the inputs

● For a given dataset and a set of m and k, the interesting GP is the
one that passes through the data, providing a
prediction/extrapolation to unseen data, respecting the same
observed correlation in the data

● In practice, m=0 and the choice of k is crucial
➢ Squared exponential (SE)

 is common usage 
● With k depending on a set of parameters θ, one can regress on θ 

to obtain the GP most consistent with data

m(x)=E [ f ( x) ] and k ( x , x ' )=V ( f (x) , f ( x ' ))

k SE ( x , x ' )=exp(−
1
2
( x−x ' )2)
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GP in practice
http://scikit-learn.org
 

● Modeling smooth distribution
● Computation complexity grows cubic with dataset size (can scale

better with sparse approximation)
● Use in model hyper-optimization scheme to model the loss

function landscape
● Categorization ...

https://arxiv.org/abs/1709.05681 

http://scikit-learn.org/
https://arxiv.org/abs/1709.05681
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Support Vector Machine
● SVM aim at finding an hyper-plane that separates maximally

two populations
● Economical method, yet robust and performant
● Solving the primal problem

● Equivalent to solving in 
dual space

min
ξ ,ω , b

∥ω∥2+C∑
i

ξi

s.t. ξi⩾0 and y i(ω
T x i+b)⩾1−ξi

max
α
∑
i

αi−
1
2
∑
jk

α jαk y j yk ( x j
T xk)

s.t. 0⩽αi⩽C and ∑
i

αi y i=0
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Artificial Neural Networks
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Artificial Neural Network
● Biology inspired analytical model, but not bio-mimetic
● Booming in recent decade thanks to large dataset, increased

computational power and theoretical novelties
● Origin tied to logistic regression with change of data representation
● Part of any “deep learning” model nowadays
● Usually large number of parameters trained with stochastic

gradient descent

h=ϕ(Ux+v)
o(x)=ωT h+b

pi≡ p( y=1∣x)≡σ(o(x))=
1

1+e−o( x)

lossXE=−∑
i

y i ln ( pi)+(1−y i) ln (1− pi)
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Neural Net Architectures

http://www.asimovinstitute.org/neural-network-zoo

● Does not cover it all : capsule, densenet, attention, graph network, ...

http://www.asimovinstitute.org/neural-network-zoo
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Curse of Dimensionality
● Fully connected layers require a large number of parameters

● Lots of a capacity in this kind of models
● Convergence of  models with millions of parameters can be hard

numerically
● Hashing and pruning studies showed lots of redundancies : not all

weights are necessary
● Weight sharing helps reducing dimensionality 

N par
l =N input

l ×N node
l +N node

l

301 parameters (8-9-9-9-4) 
~5B for 200x200 pixels image
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Convolutional Layer
● Fully connected layers require a large number of parameters
● Weights sharing applied as stencil code

● Number of parameters are dramatically reduced
● Available in 2D and 3D
● Various ways of handling multiple channels (r,g,b)
● Often associated with maxpooling for dimensionality reduction

N par
l =(N input

l /S kernel
l )×(S kernel

l ×N filter
l +N filter

l )

1D convolution, kernel size = 7, 1 filter
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Stacked Convolution

● Early convolution layer capture local information
● Late convolution layer capture global information

Not the actual weights values
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Recurrent Neural Network
● Sequential (text) of temporal (voice) data contains information in

their structure
● Model that can naturally accommodate for variable sized input
● Characterized by an hidden state carried over steps
● Concern over natural ordering

st=tanh (U x t+W st−1+br)
ot=σ(V st+bo)
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Long Short Term Memory Cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

c t= [ht−1 , x t ]
f t=σ(W f c t+b f )
i t=σ(W i c t+bi)

C̃=tanh (W C c t+bC)
C t= f t∗C t−1+i t∗C̃ t
ot=σ(W o ct+bo)
ht=ot∗tanh (C t)

● LSTM revolutionized text processing in the late 90s
● Carries around a cell state (C

t
) and hidden state (h

t
)

● Computationally expensive

Forget gate
Input gate

Control gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated Recurrent Unit
● GRU simplifies the computation from LSTM
● Only hidden state

c t=[ht−1 , x t ]
z t=σ(W z ct+bz)
r t=σ(W r ct+br)

h̃t=tanh(W h [r t∗ht−1 , x t ]+bh)
ht=(1−z t)∗ht−1+z t∗h̃t
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Skip Connections
● Stacked convolution layers distill information at consecutive scales
● Several ways of conserving the information from previous layers

f l (i l)→ f l(il)+i l

resnet 1512.03385

f l (i l)→ f l( ∪
k⩽l
(ik))

densenet 1608.06993 

f l (i l)→ f l(i l)⋅T (i l)+i l⋅(1−T (i l))

Highway network 1505.00387 
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Residual Connection
● Stacked convolution layers distill information at consecutive scales
● Residual connection carries the input other to the output,

dimensionality allowing

resnet 1512.03385

f l (il)→ f l(i l)+i l
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Dense Connection

densenet 1608.06993 

● Stacked convolution layers distill information at
consecutive scales

● dense-net provides the concatenation of all previous
layer input to the next layer

f l (i l)→ f l( ∪
k⩽l
(ik))
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Highway Connection

Highway network 1505.00387 

● Stacked convolution layers distill information at
consecutive scales

● Highway network controls how much information from
previous layer needs to move forward as input to the next
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Summary/Recap Lecture 2

➔ Unsupervised learning for clustering,
dimensionality reduction, density estimation and
generative models

➔ Supervised learning for regression and
classification

➔ Artificial neural network are in rapid evolution.
Methods providing lots of flexibility and at the
forefront of performance on many complex tasks
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