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Focus of the Lectures
● Provide enough details to understand the big picture

of machine learning and some methods

● Leaving further understanding and computational
details for the hands-on sessions and personal work

● Provide an overview of what is “out there” for you to
go and do more research for your particular
problem/application

● Inspiration taken from previous such lectures (see
references slide)

● Cannot cover what would deserve a full series of
computer science lectures
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Outline
● Day 1 

➔ Lecture : 
 Generalities

● Day 2 
➔ Lecture :

 Unsupervised learning
 Supervised learning

 Artificial Neural Network
➔ Hands-on

 Dataset manipulation
 Scikit-learn
 keras, tensorflow, pytorch  

● Day 3 
➔ Lecture

 Cutting Edge technique
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Lecture - Part 1/3
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Generalities : Outline

● Overview
● Optimization Methods
● Model Uncertainty
● Model Balance
● Assembling Models
● Training & Inference
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What Is Machine Learning
“Giving computers the ability to learn without explicitly
programming them” A. Samuel (1959).

Is fitting a straight line machine learning ?
Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning
from data.

In practice : a statistical method that can extract information
from the data, not obviously apparent to an observer.

➔ Most approach will involve a mathematical model and a
cost/reward function that needs to be optimized.

➔ The more domain knowledge is incorporated, the better.
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Overview

Yann Le cun, CERN 2016
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Supervised Learning
● Given a dataset of samples, a subset of features is qualified as

target, and the rest as input
● Find a mapping from input to target
● The mapping should generalize to any extension of the

given dataset, provided it is generated from the same
mechanism

● Finite set of target values : 
➔ Classification

● Target is a continuous variable : 
➔ Regression

dataset≡{( x i , y i)}i
find function f s.t. f ( x i)= yi
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Unsupervised Learning
● Given a dataset of samples, but there is no subset of feature

that one would like to predict
● Find mapping of the samples to a lower dimension manifold
● The mapping should generalize to any extension of the given

dataset, provided it is generated from the same mechanism

● Manifold is a finite set 
➔ Clusterization

● Manifold is a lower dimension manifold : 
➔ Dimensionality reduction, 

density estimator

dataset≡{(x i) }i
find f s.t. f ( x i)= pi
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Reinforcement Learning
● Given an environment with multiple states, given a reward

upon action being taken over a state
● Find an action policy to drive the environment toward

maximum cumulative reward

st+1=Env (st , at)
r t=Rew (st , at)

π(a∣s)=P (At=a∣S t=s)
find π s.t.∑

t

r t is maximum
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Motivation
Classical (read not deep-learning) machine learning has been
around for long and used at many level in science.

Artificial neural network : a.k.a “Deep learning” is now very
present in data-science thanks to :

 Increased computation power through general purpose
graphical processing units (GP-GPU)

 Increased dataset size through the internet-of-things (IOT)
 Improved models architectures (relu activation,

convolution, …)

➔ It became possible to train models with millions of
parameters on dataset with millions of samples, each with
multiple thousands of pixels 

➔ It became possible to extract very complex correlations, 
otherwise cumbersome to model.
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Machine Learning in Industry

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

● Prominent field in industry nowadays
● Lots of data, lots of applications, lots

of potential use cases, lots of money
➔ Knowing machine learning can open

significantly your career horizons

https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence
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Machine Learning in HEP

Michael Kagan, CERN 2017

https://www.nature.com/articles/s41586-018-0361-2 

● Machine Learning and Deep learning brought significant
improvement to the field

● Needs to be used with care and scientific approach

https://www.nature.com/articles/s41586-018-0361-2


10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

15

(Some) Machine Learning Methods

http://scikit-learn.org/stable/tutorial/index.html 

● There are a lot of methods out there

http://scikit-learn.org/stable/tutorial/index.html
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Overview

Dataset

Model

Objective
function

Optimization Method

Predictive
model

● Many optimization methods adapted to the various
phase space of the dataset, model, objective

● Gradient descent, evolutionary algorithms, ...
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Objective Function

● Named Objective/Loss/Cost/Utility/Reward function
interchangeably

● Represents the function that represents the
goodness of a model at solving the problem at hand

● Function to be optimized to find the best model

● e.g. Mean squared difference for regression
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Optimization Methods
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Gradient Descent Optimization

● For a differentiable loss function f, the first Taylor expansion
gives

● The direction to locally maximally decrease the function value
is anti-collinear to the gradient 

● Amplitude of the step   to be taken with care to prevent
overshooting 

f ( x+ε)= f ( x)+ε∇ f ( x)

ε=−γ∇ f ( x)
γ
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Non-Convex Optimization

● The objective functions optimized in
machine learning are usually non-convex

● Non guaranteed convergence of gradient
descent

● Gradients may vanish near local optimum
and saddle point
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Stochastic Gradient Descent

● Application of one gradient descent is expensive. Can be
prohibitive with large datasets

● Following the gradient update from each and every sample of
a dataset leads to tensions

 In binary classification, samples from opposite
categories would have “opposite gradients”

● Gradients over multiple samples are independent, and can be
computationally parallelyzed

➔ Estimate the effective gradient over a batch of samples

∇ eff f ( x)= 1
N
∑

i∈batch

∇ i f (x)
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Non Analytical SGD

● Some valuable loss function might not be analytical and
their gradients cannot be derived 

● Used finite element method to estimate the gradient
numerically

● Method can be extended to using more sampling and
better precision

● Quite expensive computationally in number of function
calls and impractical in large dimension

● Robust methods available in most program library

∇ f (x)=
f (x+ε)− f ( x)

ε
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Second Order Methods

ε∼−H (x)−1∇ f (x)

● Newton-Raphson method defines a recursive procedure to
find the root of a function, using its gradient.

● Finding optimum is equivalent to finding roots of the gradient,
hence applying NR method to the gradient using the Hessian

● Convergence guaranteed in certain conditions
● Alternative numerical methods tackle the escape of saddle

points and computation issue with inverting the Hessian
● In deep learning “hessian-free” methods are prohibitive

computationally wise

f ( x+ε)= f (x)+ε∇ f (x)+1
2
εT H ( x)ε
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Approximate Bayesian Computation

● ABC is applicable when the likelihood                         is
intractable/unknown

● The method requires a simulator or surrogate model
● Generate simulated data for models drawn from the prior,

accept/reject whether matching data

● Overly expensive in calls to simulator
➢ Introduce summary statistics to enhance border cases
➢ Efficient sampling to boost acceptable models
➢ Generalized methods for comparing simulated samples

with data

➔ Most relevant work on likelihood-free inference in HEP 
https://arxiv.org/abs/1805.12244  

π(model∣data)=
π(data∣model )π(model )

π(data)

π(data∣model )

https://arxiv.org/abs/1805.12244
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Bayesian Optimization
● Applicable to optimize function

without close form and that are
expensive to call (numerical
gradient impractical)

● Approximate the objective function
with Gaussian processes (GP)

● Start at random points, then
sample according to optimized
acquisition function

➢ Expected improvement

➢ Lower confidence bound

➢ Probability of improvement

−EI (x)=−E ( f GP(x)− f (xbest))

LCB (x)=μGP( x)+κσGP( x)

−PI (x)=−P ( f GP(x)⩾ f (xbest)+κ)
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Evolutionary Algorithms
● Applicable to function in high

dimensions, with a non regular
landscape

● Start from random population
● Estimate fittest fraction of

individuals
● Bread and mutate individuals

● Direction of optimization is given
by the cross-over and mutation
definition

● Multiple over algorithms : particle
swarn, ...
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Adiabatic Quantum Annealing 
➢ System setup with trivial Hamiltonian H(0) and ground state
➢ Evolve adiabatically the Hamiltonian towards the desired

Hamiltonian H
p

➢ Adiabatic theorem : with a slow evolution of the system, the
state stays in the ground state.

https://arxiv.org/abs/quant-ph/0001106 
https://arxiv.org/abs/quant-ph/0104129

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129
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Simulated Annealing
● Monte-Carlo based method to find ground state

of energy functions
● Random walk across phase space 

➔accepting descent
➔accepting ascent with probability e-ΔE/kT

● Decrease T with time
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Model Uncertainty
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Initialization

● chaos ≡ small change of initial condition can lead to large
difference in output 

● Optimization of non-convex function is chaotic
➢ Degenerate local/global minimums
➢ Length scale of stepping in optimization

● Choice of initial point(s) in parameter space influences the outcome
of the optimization

● Needs to be accounted for in model comparison
● Quoted performance should include an estimation of the variance
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Test Statistics
● Model performance estimated on a finite sized dataset
● Can alter the outcome of model comparison
● Particularly important in dealing with small number of

samples per class
● Needs to be properly taken into consideration during

model comparison
● Model performance should be reported with an

estimation of that uncertainty

● Can be estimated with bootstrapping for example

{ pi }i∈test set∼Poisson(1)
fom∗=E

{ pi }
[ fom(xi pi) ]

σ fom
∗ =RMS

{ pi }
[ fom(xi pi) ]
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Cross Validation

● Model selection requires to have an estimate of the uncertainty
on the metric used for comparison

● K-folding provides an un-biased way of comparing models
● Stratified splitting (conserving category fractions) protects from

large variance coming from biased training
● Leave-one-out cross validation : number folds ≡ sample size
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 Model Balance
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Under-fitting
● Poor model performance can be explained 

➢ Lack of modeling capacity (not enough parameters,
inappropriate parametrization, …)

➢ Model parameters have not reached optimal values
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Data Efficiency
● Degeneracy in objective function can arise from under-

constrained model
➢ Not enough data point to constraint all parameters

● Family of solutions make the optimization algorithm stationary
on the training set, while fluctuating on the testing set

● Limit of under-constraint is model type dependent. 
● Can usually happen with deep learning models
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Need for Data
● “What is the best performance one can get ?” rarely has

an answer
● When comparing multiple models, one can answer “what is

the best of these models, for this given dataset ?”
● It does not answer “what is the best model at this task ?” 
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Over-fitting
● “Too good to be true” model performance can be explained 

➢ Excessive modeling capacity (too many parameters,
parametrization is too flexible, ...)

➢ Model parameters have learn the trained data by heart
● Characterized by very good performance on the training set

and (much) lower performance on unseen dataset 
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Regularization
● Over-fitting can be limited by additional terms to the

objective function
● Any term that aim at reducing the capacity of the model

➢ L1 : 
➢ L2 :
➢ Huber :  

● Regularization parameters need to be optimized too

Lossreg=Loss+λ1∑∣wi∣
Lossreg=Loss+λ2∑ w i

2

Lossreg=Loss+λh ( 12 L2 if L1⩽δ else δ(L1−
1
2
δ))

L2 explodes
with outliers

L1 over-constrains
to few parameters
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Drop-Out

● Special case of regularization in artificial neural network
● During training of the model, set some nodes inactive at a

random rate
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Generalization
● Systematic error ≡ bias
● Sensitivity of prediction ≡ variance
● A good model is a tradeoff both 
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Assembling Models
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Ensembling

● A single model might have limited performance for various
reasons related to how the model is constructed

● Considering output from multiple models can outperform
single models

● Loss of interpretability of the final assembled model trade-
off of improved performance

● Models can be trained in parallel, sequentially, or both …
➢ Boosting
➢ Gradient Boosting
➢ Bagging
➢ Random forest
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Logistic Regression

● Logistic regression can be as a simple assembling method
● Linear combination of all models to form a discriminant
● Discriminant used with logistic function to define a per

sample probability
● Maximization of cross entropy through regular gradient

descent provides the final discriminant

H ( x)≡∑
j

ω j h j(x)

p ( y i=1∣x i)= pi≡
1

1+e−H

p ( y i∣x i)= pi
yi(1− pi)

1− yi

ωmodel=arg min
ω

(−log( p( y i∣x i)))
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Boosting
● Adaboost is a method of model assembling such that each

model is learning to improve the performance over mis-
classified samples

● Train a classifier on the weighted samples
● Define the update to the sequence of classifier

● The weights of the samples are then updated for next step

➢ Variations for regression and classifications

M m( x)=M m−1( x)+αm hm( x)

where αm≡
1
2
ln ( 1−ϵm

ϵm )
where ϵm= ∑

hm(x i)≠ y i

ωi ,m

ωi ,m+1=
ωi ,m

Zm

e−αm yi hm(x i) with ωi ,1=
1
N



10/25/18

Machine Learning Lecture, EIPS,J-R Vlimant

45

Gradient Boosting
● Gradient boosting is a method of model assembling such

that each model is learning to improve the performance of
the previous one for a provided loss function

● The pseudo-residuals r captures how much to update the
previous output to minimize the desired loss

● Train the next model on the pseudo-residuals r
m,i

● Find a multiplier for the new model to conclude iteration 

➢ Possible variation of the methods for tree-based models
➢ Applicable to other model types

Loss≡L(target , prediction)=L(t , p)

M m(x)=M m−1( x)+γm hm(x)
where γm≡arg min

γ
∑

i

L ( y i , M m−1(x i)+γhm(x i))
rm ,i=−[ ∂ L

∂ p ]
M m−1( xi)
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Bagging
● Bootstrap aggregating, a.k.a bagging assembles multiple

models trained from B bootstrap ensembles of the training
data

➢ Reduces the variance of the final model
➢ Provides an estimate of the uncertainty on the model

response

➢ Commonly used on decision trees, however applicable to
all types of model

f ( x)= 1
B
∑

b

f b (x)

σ f (x)=√∑b ( f b(x)− f (x))2

B−1
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Random Forest

● Another ensembling technique to improve performance
of decision trees

● Variance from bootstrapping is overestimated because
the sub-samples are not purely independent

● Combined bootstrapping and random feature selection
● Feature selection increases the variance of a single tree
● The random feature selection make the decision trees

more independent and decrease the variance
● Trade-off in variance often makes random forest a

better model
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Metrics
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Figure(s) of Merit(s)

● Objective function in optimization might be chosen for
computational reason (differentiable, …)

● Objective function might only be a proxy to the actual
figure of merit of the problem at hand

● Multi-objective optimization is subject to trade-off
between objectives

● While model optimization is based on the loss function
over the training set, following the evolution of a more
interesting metric over the validation can help selecting
models that are better for the use case
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Receiver Operating Characteristic 
● Characterize the various operating point possible for a

given model, depending on the purpose of the model
● Practical visually to compare models
● Below the first diagonal is worse then random guess
● Area under the curve (AUC) a.k.a the integral, of the ROC

curve often use as single metric
● AUC is representative when model curve are not crossing 
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Classification metrics
● Cross entropy : 
● Accuracy (acc)
● True positive rate (TPR), recall 
● False positive rate (FPR)
● Precision
● F1 score
● Area under the ROC curve 

H ( p , q)=E
p
[−log q ]=−∑

x

p(x) log q(x)
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Regression Metrics
● Mean absolute error :

● Mean squared error : 

● Explained variance : 

➢ If both model prediction and target are distributions
● KL divergence : 
● Earth-mover distance :  

MAE (x , y)= 1
N
∑

i

∣h( x i)− y i∣

MSE ( x , y)= 1
N
∑

i

(h(x i)− y i)
2

AV (x , y)=1−(σ(h(xi)− y i)
σ (h(x i)) )

2

EMD( p ,q)≡W ( p ,q)=inf
γ

E( x , y)∼γ [∥x− y∥]
s.t.γX= p ;γY=q

in γ(x , y)=γX∣Y ( x∣y)γY ( y)=γY∣X ( y∣x)γX (x) ,

DKL( p∥q)=E
p
(log ( p

q ))
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Class Imbalance

● In many cases the number of samples varies significantly
from class to class

● Class imbalance biases the performance on the minority
class

● Multiple ways to tackle the issue
➢ Over-sample the minority class
➢ Synthetic minority over-sampling
➢ Under-sample the majority class
➢ Weighted loss function
➢ Active learning

● Metrics can be sensitive to class imbalance and be
misguiding if not correct : e.g. 99% accuracy with 0% recall 
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Training & Inference
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Training
● Training phase or learning phase is when the parameters of the

model are adujsted to best solve the problem
● For some model/technique (especially deep learning) this can

become computationally prohibitive
● General purpose graphical processing units (GP-GPU) offer an

enormous amount of parallel compute power, applicable to
specific numerical problems

● Matrix calculation, minibatch computation, deep learning, … can
get a significant boost from GP-GPU.

● Further parallelization can be obtained across multiple
nodes/GPU using 
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Distributed Training
● Further parallelization can be obtained across multiple

nodes/GPU
● Multiple directions of parallelism

➢ Hyper-parameter distribution : in k-folding or hyper-
opt, models are independently trained

➢ Model distribution : distribute part of the model
numerical calculation over hosts

➢ Gradient distribution : distribute the computation of
the gradient over hosts

➢ Batch distribution : computation over minibatch are
independent and later aggregated (staleness issue)
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Hyper-parameter Optimization
● Most optimization methods and models require hyperparameters 

 number of layers in an ANN, number of leaves in a
decision tree, learning rates, …

● In most cases these parameters cannot be optimized while the
model is trained

● Their values can however significantly influence the final
performance

➢ These can be optimize in various ways
 Simple grid search
 Bayesian optimization
 Evolutionary algorithm

➢ Model comparison should be done very carefully
 Controlling that performance comparison is fair
 K-folding is a “must”
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Inference
● Contrary to training, making prediction from a trained model is

usually rather fast, even on CPU
● However fast is may be, it might still not be fast enough for the

particular application
● Faster inference can be obtained on specialized hardware GP-

GPU, TPU, FPGA, neuromorphic, … when the application allows
it (trigger, onboard electronics, ...)

75 ns

https://hls-fpga-machine-learning.github.io/hls4ml/ 

https://hls-fpga-machine-learning.github.io/hls4ml/
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Summary/Recap Lecture 1

➔ Machine Learning is tightly coupled to an
optimization problem

➔ Checking variance in model performance is
extremely important

➔ Large model require lots of data 

➔ Assembling models yields better performance
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