Machine Learning Lecture




Focus of the Lectures

* Provide enough details to understand the big picture
of machine learning and some methods

» Leaving further understanding and computational
details for the hands-on sessions and personal work

* Provide an overview of what is “out there” for you to
go and do more research for your particular
problem/application

* Inspiration taken from previous such lectures (see
references slide)

 Cannot cover what would deserve a full series of
computer science lectures
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Outline
 Day 1

> Lecture :
+ Generalities

« Day 2
> Lecture :

+ Unsupervised learning
+ Supervised learning
« Artificial Neural Network
»> Hands-on
« Dataset manipulation
+ Scikit-learn
+ keras, tensorflow, pytorch

« Day 3
> Lecture

+ Cutting Edge technique
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Generalities : Outline

* Overview

e Optimization Methods
* Model Uncertainty

* Model Balance

* Assembling Models
 Training & Inference

m
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What Is Machine Learning

“Giving computers the ability to learn without explicitly
programming them” A. Samuel (1959).

Is fitting a straight line machine learning ?

Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning
from data.

In practice : a statistical method that can extract information
from the data, not obviously apparent to an observer.

> Most approach will involve a mathematical model and a
cost/reward function that needs to be optimized.
> The more domain knowledge is incorporated, the better.
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Overview

Reinforcement Learning (cherry)

— The machine predicts a scalar
reward given once in a while.

— A few Dbits for some samples

Supervised Learning (icing)

— The machine predicts a category
or a few numbers for each input

— 10-10,000 bits per sample

Unsupervised Learning (cake)

— The machine predicts any part

of its input for any observed
part.

— Predicts future frames in videos
— Millions of bits per sample
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Supervised Learning

» Given a dataset of samples, a subset of features is qualified as
target, and the rest as input

* Find a mapping from input to target

* The mapping should generalize to any extension of the
given dataset, provided it is generated from the same
mechanism

datasetE[(xi, yl.)]l.
find function f s.t. f(x,)=

a0

80

Temperature

70

 Finite set of target values :
> Classification

e Target is a continuous variable : :
> Regression 5 o m

Ozone
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Unsupervised Learning

« Given a dataset of samples, but there is no subset of feature
that one would like to predict

* Find mapping of the samples to a lower dimension manifold

 The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

dataset = [(xl.) ]l.

find f st f(x,)=

 Manifold is a finite set
> Clusterization
 Manifold is a lower dimension manifold :
> Dimensionality reduction,
density estimator
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Reinforcement Learning

e Given an environment with multiple states, given a reward
upon action being taken over a state

* Find an action policy to drive the environment toward
maximum cumulative reward

St+1:Env(St’ at)
r,=Rew(s,,a,)

—
T
_
t(als)=P(4,=alS,=s)
find T s.t. Zr is maximum
t
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Motivation

Classical (read not deep-learning) machine learning has been
around for long and used at many level in science.

Artificial neural network : a.k.a “Deep learning” is now very
present in data-science thanks to :
+ Increased computation power through general purpose
graphical processing units (GP-GPU)
+ Increased dataset size through the internet-of-things (IOT)
« Improved models architectures (relu activation,

convolution, ...)

> |t became possible to train models with millions of
parameters on dataset with millions of samples, each with

multiple thousands of pixels
> |t became possible to extract very complex correlations,

otherwise cumbersome to model.
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* Prominent field in industry nowadays

 Lots of data, lots of applications, lots
of potential use cases, lots of money

> Knowing machine learning can open
significantly your career horizons

1000
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Machine Learning in HEP

ATLAS
1s=8TeV,203fb" Wt
1-jet 1-tag i

LAY

In analysis:

— Classifying signal from background, especially in
complex final states

— Reconstructing heavy particles and improving the
energy / mass resolution

Events /0.05

International journal of science

Review Article =~ Published: 01 August 2018

- » Machine learning at the energy and
. o T e intensity frontiers of particle physics
In reconstruction: 0 e ey

014

Barrel

. . . 2 F simuian E . . - - . . .
_ I prOVlng detector leVel lnputs to reconstruction 210 imulation H:Y::},‘;{;n? GeV 4 Alexander Radovic ™, Mike Williams ®, David Rousseau, Michael Kagan, Daniele Bonacorsi,
3
n10°

— Sumof pdfs ] Alexander Himmel, Adam Aurisano, Kazuhiro Terao & Taritree Wongjirad

— Particle identification tasks

5 : P . Nature 560, 41-48 (2018) = Download Citation ¥
— Energy/ direction calibration amre (2018) - Download Citation

‘ JINST 10 P08010 2015 3
0.8 1 1.2 1.4 16 1.8
o Abstract

In the trigger:
— Quickly identifying complex final states

T T
| ATLAS Simulation Zly'>tr
Tau Particle Flow  Diagonal fraction: 74.7%

s 02 25 35 ss IR Our knowledge of the fundamental particles of nature and their

3
y mode o=
>

interactions is summarized by the standard model of particle physics.
po - 0.2 0.6 0.3 925 40.2
In computlng: Advancing our understanding in this field has required experiments that

Reconstructed deca
) kS

. . . . - h*222°~ 0.4 6.0 35.4 0.1 0.4 . . . .. .
= Estlmatmg dataset popularlty, and determlnlng how operate at ever higher energies and intensities, which produce
number and location of dataset replicas A Bl extremely large and information-rich data samples. The use of
— n - 89.7 16.0 4.3 1.2 03 -

M iCh I K g n C E R N 2 O 1 7 ‘ : ‘ machine-learning techniques is revolutionizing how we interpret these
a e a a L L 3n* 3n 212"
I

data samples, greatly increasing the discovery potential of present and
.512.05955  Generated decay mode ples, gr y g YP p

future experiments. Here we summarize the challenges and

https://www.nature.com/articles/s41586-018-0361-2

* Machine Learning and Deep learning brought significant
improvement to the field

* Needs to be used with care and scientific approach
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Some) Machine Learning Methods

classification

— scikit-learn
-m R ... algorithm cheat-sheet
Ensemble < . /
ot /
\ . o
ves regression

YES

o NOT \ sal
Text ERTNE <100K f
SVC

predicting a
ves | category
do you have .
labeled Hg
YES
predicting a
quantity
NO

SGD q
 ElasticNet
SVR(kernel="rbf")
es
NO,
) |
< few features
s:}xg;gsK 4= should be

important

NOT

Spectral WORKING
Clustering =~ m o
number of
e YEs ol categories
. ’ known

<10K ‘

samples

NOT
WORKING

RidgeRegression
SVR(kernel="linear"')

NO

Spectral
hedding

or S8 TLE
WORKING

<10K
samples NOT

WORKING

/
- ¥

ES

Sk
samples n

NO

Kernel dimensionality
tough = redictin .
icgk) @ reduction
——— -

http://scikit-learn.org/stable/tutorial/index.html

 There are a lot of methods out there
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Overview

~_

N

Objective
function

W ~ Model i

Dataset

* Many optimization methods adapted to the various
phase space of the dataset, model, objective
» Gradient descent, evolutionary algorithms, ...
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Objective Function

 Named Objective/Loss/Cost/Utility/Reward function
iInterchangeably

* Represents the function that represents the
goodness of a model at solving the problem at hand

* Function to be optimized to find the best model

* e.g. Mean squared difference for regression
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Gradient Descent Optimization

A

J(w) Initial

 __— Gradient

!
1
/
!

 For a differentiable loss function f, the first Taylor expansion
gives f(x+e)=f(x)+eV f(x)

» The direction to locally maximally decrease the function value
is anti-collinear to the gradient e=—yV f(x)

« Amplitude of the stepy to be taken with care to prevent
overshooting
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Non-Convex Optimization

I‘Fujou. :H'u.r’f /‘

ient descent

* The objective functions optimized in
machine learning are usually non-convex

* Non guaranteed convergence of gradient
descent

» Gradients may vanish near local optimum
and saddle point

achine Learning’téct PS,
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Stochastic Gradient Descent

 Application of one gradient descent is expensive. Can be
prohibitive with large datasets

* Following the gradient update from each and every sample of
a dataset leads to tensions

+ In binary classification, samples from opposite
categories would have “opposite gradients”

» Gradients over multiple samples are independent, and can be
computationally parallelyzed

> Estimate the effective gradient over a batch of samples

V., f(x) Z V.fl(x

z € batch

21
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Non Analytical SGD

 Some valuable loss function might not be analytical and
their gradients cannot be derived

» Used finite element method to estimate the gradient
numerically

Vf(x):f(x—l_g)_f(x)

€

* Method can be extended to using more sampling and
better precision

* Quite expensive computationally in number of function
calls and impractical in large dimension

* Robust methods available in most program library

Machme Learnln e
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Second Order Methods

* Newton-Raphson method defines a recursive procedure to
find the root of a function, using its gradient.

* Finding optimum is equivalent to finding roots of the gradient,
hence applying NR method to the gradient using the Hessian

flxre)=f(x)+eV f(x)+ e Hix)e
e~—H (x)"'V f(x)
e Convergence guaranteed in certain conditions
 Alternative numerical methods tackle the escape of saddle
points and computation issue with inverting the Hessian

 In deep learning “hessian-free” methods are prohibitive
computationally wise
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Approximate Bayesian Computation

1t (data|model ) t(model )

1t(model|data)= < (data)
ata

- ABC is applicable when the likelihood 7t (data|model ) is
intractable/unknown

 The method requires a simulator or surrogate model

» Generate simulated data for models drawn from the prior,
accept/reject whether matching data

» Overly expensive in calls to simulator
> Introduce summary statistics to enhance border cases
- Efficient sampling to boost acceptable models
> Generalized methods for comparing simulated samples
with data

> Most relevant work on likelihood-free inference in HEP
https://arxiv.org/abs/1805.12244
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Bayesian Optimization

» Applicable to optimize function
without close form and that are
expensive to call (numerical
gradient impractical)

* Approximate the objective function
with Gaussian processes (GP)

e Start at random points, then
sample according to optimized
acquisition function

> Expected improvement
—EI(x)==E(fp(x)= [ (Xpe))

> Lower confidence bound
LCB(x)=ugp(x)+K0g(x)

> Probability of improvement
=PI(x)==P(fep(x)> [ (x4) + )
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Evolutionary Algorithms

" o ® landscape

T I e * Applicable to function in high
®oo Fuknu 37 dimensions, with a non regular
« Start from random population

D. Reproduce B. Evaluate . . .

Clone & Mutate . Finess o Estimate fittest fraction of

0® ® | > ° individuals

o? ‘a @ o ° Bread and mutate individuals
° ®

C. Selection

P L Pltinti  Direction of optimization is given
[g ®° ® by the cross-over and mutation
i definition

®
®° * Multiple over algorithms : particle

@ Netwerk (O unfit Network @ Cloned Network swarn, ...
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Adiabatic Quantum Annealing

- System setup with trivial Hamiltonian H(0) and ground state
- Evolve adiabatically the Hamiltonian towards the desired
Hamiltonian Hp

> Adiabatic theorem : with a slow evolution of the system, the
state stays in the ground state.

Setup Hamiltonian: H(0) Problem Hamiltonian: H,

Uniform superposition of State minimizing the energy
possible qubit states of the problem
Hamiltonian

100% -
90% -
80% -
70% -
60% -
50% -
40%
30%
20% -
10% -
0%

= H(t) = A(t)H(0) + B(t)Hp T=tina

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129

achine Learning’téct PS,
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Simulated Annealing

* Monte-Carlo based method to find ground state
of energy functions
« Random walk across phase space
> accepting descent
> accepting ascent with probability ek
* Decrease T with time

Temperature
A

L

10/25/18 gm: CMS y -
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Initialization

ﬂﬂ
i

i,

N
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)
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« chaos = small change of initial condition can lead to large
difference in output
* Optimization of non-convex function is chaotic
> Degenerate local/global minimums
> Length scale of stepping in optimization
« Choice of initial point(s) in parameter space influences the outcome
of the optimization
* Needs to be accounted for in model comparison
* Quoted performance should include an estimation of the variance
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Test Statistics

* Model performance estimated on a finite sized dataset

e Can alter the outcome of model comparison

 Particularly important in dealing with small number of
samples per class

* Needs to be properly taken into consideration during
model comparison

* Model performance should be reported with an
estimation of that uncertainty

« Can be estimated with bootstrapping for example

{pi}iEtest SetNPOiSSOH ( 1 )

fom™ :{E [me (xipi)l

Ofom RMS[me(x p,)]
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Machine Learning’téct

31



Cross Validation

D Validation Set

- Training Set

Round 1 Round 2 Round 3 Round 10

Validation 93% 920% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...

* Model selection requires to have an estimate of the uncertainty
on the metric used for comparison

« K-folding provides an un-biased way of comparing models

 Stratified splitting (conserving category fractions) protects from
large variance coming from biased training

» Leave-one-out cross validation : number folds = sample size

achine Learning’tect PS,
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Under-fitting

 Poor model performance can be explained
~ Lack of modeling capacity (not enough parameters,
inappropriate parametrization, ...)
> Model parameters have not reached optimal values

A
X
-0 o
X0 o

.

X O
XX~ o

X 0)(
X9 x

Under Fit
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Data Efficiency

* Degeneracy in objective function can arise from under-
constrained model
> Not enough data point to constraint all parameters
* Family of solutions make the optimization algorithm stationary
on the training set, while fluctuating on the testing set
e Limit of under-constraint is model type dependent.
e Can usually happen with deep learning models

10/25/18 (@: CMS y -
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Need for Data

* “What is the best performance one can get ?” rarely has
an answer

 When comparing multiple models, one can answer “what is
the best of these models, for this given dataset 7~

* It does not answer “what is the best model at this task ?”

foommsss ’kf —————— . sy +
0.66 A
0.64 J” irrL 'Hr J;r ﬂ

o
(®)]
N

e
o
o

Area under ROC (AUROCQC)
o
wl
(00}

Training size
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Over-fitting

« “Too good to be true” model performance can be explained
- Excessive modeling capacity (too many parameters,
parametrization is too flexible, ...)
> Model parameters have learn the trained data by heart
e Characterized by very good performance on the training set
and (much) lower performance on unseen dataset

A A
X X
X0 o X: oﬁxé o
"Xo O Xx: xo0
X Qo ¥ X/ O
X0 X KO

N o .

Appropriate Over Fit

37
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Regularization

« Over-fitting can be limited by additional terms to the
objective function

* Any term that aim at reducing the capacity of the model
- L1 LossregzLoss—l—klz
- L2 : LOSS,,egZLOSS-I-}\zZ W,

-~ Huber : Loss,,,=Loss+\, %Lz if LI<O else 6(L1—%6)

* Regularization parameters need to be optimized too

w;

L1 over-constrains

to few parameters L2 explodes

with outliers

—_— S

1 1
-4 -3 -2 -1 0

-
10/25/18 (@: CMS @!
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Drop-Out

» Special case of regularization in artificial neural network

 During training of the model, set some nodes inactive at a
random rate

>0

L
~
A

YL XL KT

7 \) 7AY
AKX

NN {p‘»"‘
R TR 7
\
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Generalization

e Systematic error = bias
« Sensitivity of prediction = variance
* A good model is a tradeoff both

Prediction Error

Bias trade-off

Low Model Complexity

10/25/18 gq): CMS -
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Ensembling

A single model might have limited performance for various
reasons related to how the model is constructed

« Considering output from multiple models can outperform
single models

 Loss of interpretability of the final assembled model trade-
off of improved performance

 Models can be trained in parallel, sequentially, or both ...
~ Boosting
- Gradient Boosting
» Bagging
> Random forest

10/25/18 (o ) CMS m
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Logistic Regression

 Logistic regression can be as a simple assembling method
 Linear combination of all models to form a discriminant

 Discriminant used with logistic function to define a per
sample probability

« Maximization of cross entropy through regular gradient
descent provides the final discriminant

EZ (njhj(x)
J
1
1+e 7

p(yilx)=p/(1-p)""
wmodez=argm(gn( log (p(yx,)
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Boosting

» Adaboost is a method of model assembling such that each
model is learning to improve the performance over mis-
classified samples

 Train a classifier on the weighted samples
» Define the update to the sequence of classifier
Mm('x):Mm—l(x)_I_O(‘mhm(x)
1. [1—¢,
where ocmziln 3

m

where € = Z W,

* The weights of the samples are then updated for next step

W, —a v (x :
wl m+1: L,m amyl m(xz) Wlth (Dl 1:_
’ / - N

m

~ Variations for regression and classifications

10/25/18 CMS m
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Gradient Boosting

« Gradient boosting is a method of model assembling such
that each model is learning to improve the performance of
the previous one for a provided loss function

Loss=L (target , prediction ) =L (t , p)

 The pseudo-residuals r captures how much to update the
previous output to minimize the desired loss

« Train the next model on the pseudo-residuals r,_ .
* Find a multiplier for the new model to conclude iteration

oL M (x)=M,, | (x)+y,h,(x)

rooo=—

m,li

X;

> Possible variation of the methods for tree-based models
- Applicable to other model types

10/25/18 £ CMS y'
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Bagging

e Bootstrap aggregating, a.k.a bagging assembles multiple
models trained from B bootstrap ensembles of the training

data 1
:Eg fb(x)

> Reduces the variance of the final model
> Provides an estimate of the uncertainty on the model

response
\/ 2ol (2

B—1

Of(x):

- Commonly used on decision trees, however applicable to
all types of model

10/25/18 CMS m
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Random Forest

* Another ensembling technique to improve performance
of decision trees

» VVariance from bootstrapping is overestimated because
the sub-samples are not purely independent

 Combined bootstrapping and random feature selection
» Feature selection increases the variance of a single tree

» The random feature selection make the decision trees
more independent and decrease the variance

e Trade-off in variance often makes random forest a
better model

10/25/18 £ CMS m
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Figure(s) of Merit(s)

» Objective function in optimization might be chosen for
computational reason (differentiable, ...)

» Objective function might only be a proxy to the actual
figure of merit of the problem at hand

» Multi-objective optimization is subject to trade-off
between objectives

* While model optimization is based on the loss function
over the training set, following the evolution of a more
Interesting metric over the validation can help selecting
models that are better for the use case

10/25/18 £ CMS y'
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Receiver Operating Characteristic

» Characterize the various operating point possible for a
given model, depending on the purpose of the model

 Practical visually to compare models

» Below the first diagonal is worse then random guess

« Area under the curve (AUC) a.k.a the integral, of the ROC
curve often use as single metric

 AUC is representative when model curve are not crossing

ROC curve, npy =80

— @
12
Fe

pr + CHS, auc=92.3%
—== PUPPI weight + CHS, auc=93.9% ]
—— Fully connected + CHS, auc=94.8%
GRU + CHS, auc=94.8% ]
GGNN + CHS, auc=96.1%

I
osg,

False negative False positiv False positive rate
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Classification metrics

e F1 score
 Area under the ROC curve

Total
population
Predicted
condition
Predicted ~ positive
condition Predicted

condition
negative

10/25/18

True condition

Condition positive Condition negative
True positive, False positive,
Power Type | error

False negative, .
True negative

Type Il error
True positive rate (TPR), Recall, Sensitivity, False positive rate (FPR), Fall-out,
- . ZTrue positive - _ X False positive
probability of detection = s Condtion positive probability of false alarm = s Condition negative
False negative rate (FNR), Miss rate Specificity (SPC), Selectivity, True negative rate
2 False negative 2 True negative

= = Condition positive (TNR) = s Condttion negative

X

_ Z Condition positive
Frevalence = 2 Total population

Positive predictive value (PPV), Precision =

2 True positive
% Predicted condition posifive

False omission rate (FOR) =

2 False negative
2 Predicted condition negative

Positive likelihood ratio (LF+) = Lo

Negative likelihood ratio (LR-) = FNIR

Cross entropy - H(p, q)=E[—logq]:—Z p(x)logq(x)
Accuracy (acc) P
True positive rate (TPR), recall
False positive rate (FPR)
Precision

Accuracy (ACC) =

Z True positive + Z True negative
2 Total population

False discovery rate (FDR) =

2 False positive
¥ Predicted condition positive

Negative predictive value (NPV) =

2 True negative
2 Predicted condition negative

Diagnostic odds ratio F score =
LR+ 2
(DOR) = LR= 1 1

Recall * Precision
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Regression Metrics

« Mean absolute error : MAE (x,y)= Z h(x

« Mean squared error : MSE(x,y)=%Z (h(x,)—y,)
! 2
» Explained variance : 4V (x, y)=1- 0(;((;6 ))y’)
X

- If both model prediction and target are distributions
* KL divergence : D, (pllq)=E(log(£))
« Earth-mover distance : P

EMD(p,q)=W(p,q)=inf E,, ey =l
SLYx=DP,¥Yy=¢q

in Y(x:y):YXw(xb/)YY( ) yY|X<y|x>YX<x>’
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Class Imbalance

* In many cases the number of samples varies significantly
from class to class
» Class imbalance biases the performance on the mmorlty

CIaSS sl — no wéights |

* Multiple ways to tackle the issue - hesne]
> Over-sample the minority class
- Synthetic minority over-sampling
> Under-sample the majority class
> Weighted loss function
> Active learning

» Metrics can be sensitive to class imbalance and be
misguiding if not correct : e.g. 99% accuracy with 0% recall

10/25/18 (o VS y m
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Training

 Training phase or learning phase is when the parameters of the
model are adujsted to best solve the problem

* For some model/technique (especially deep learning) this can
become computationally prohibitive

« General purpose graphical processing units (GP-GPU) offer an
enormous amount of parallel compute power, applicable to
specific numerical problems

e Matrix calculation, minibatch computation, deep learning, ... can
get a significant boost from GP-GPU.

« Further parallelization can be obtained across multiple
nodes/GPU using

55
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Distributed Training

» Further parallelization can be obtained across multiple
nodes/GPU

» Multiple directions of parallelism

- Hyper-parameter distribution : in k-folding or hyper-
opt, models are independently trained

- Model distribution : distribute part of the model
numerical calculation over hosts

> Gradient distribution : distribute the computation of
the gradient over hosts

- Batch distribution : computation over minibatch are
independent and later aggregated (staleness issue)

10/25/18 £ CMS y'
Maghine Learning’téct PS,
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Hyper-parameter Optimization

* Most optimization methods and models require hyperparameters

« number of layers in an ANN, number of leaves in a
decision tree, learning rates, ...

* In most cases these parameters cannot be optimized while the
model is trained

» Their values can however significantly influence the final
performance

> These can be optimize in various ways
+ Simple grid search
+ Bayesian optimization
+ Evolutionary algorithm
~ Model comparison should be done very carefully
+ Controlling that performance comparison is fair
+ K-folding is a “must”

10/25/18 £ CMS y'
Maghine Learning’téct PS,

57




Inference

« Contrary to training, making prediction from a trained model is
usually rather fast, even on CPU

 However fast is may be, it might still not be fast enough for the
particular application

» Faster inference can be obtained on specialized hardware GP-
GPU, TPU, FPGA, neuromorphic, ... when the application allows
it (trigger, onboard electronics, ...)

his4ml Reuse factor = 1, Kintex Ultrascale

244 Full model
Pruned model

221

20 A

g 18 /\—
_116~

75 ns »

1] &

12 A

https://hls-fpga-machine-learning.github.io/hls4ml
10

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision
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https://hls-fpga-machine-learning.github.io/hls4ml/

> Machine Learning is tightly coupled to an
optimization problem

> Checking variance in model performance is
extremely important

> Large model require lots of data

> Assembling models yields better performance

59
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