

MGMR3D, a semi-analytic code for the obtaining the radio footprint from the shower currents

Olaf Scholten, Gia Trinh, Krijn D. de Vries, Brian M. Hare

KVI – CART, University of Groningen, The Netherlands IIHE, Vrije Universiteit Brussel, Belgium

ARENA - 2018

Motivation:

Use radio emission as tool to learn about shower-currents

Need: Fast and non-MonteCarlo code for radio footprint (Intensity & polarization).

MGMR3D: Complete pattern for arbitrary current profile in 10 seconds on windows laptop

Approach: Semi-analytic & conveniently parametrized shower structure

This talk:

- Implemented shower parametrization, inspired by CORSIKA
- Compare results with COREAS

formulas

We parametrize the charge-current densities $j^{\mu}(t_s, x_s, y_s, h) = \frac{w(r_s)}{r_s} f(h, r_s) J^{\mu}(t_s)$ in the shower depending on

- height in the atmosphere = $z = -c t_s$
- lateral distance to the shower axis = $r_s = \sqrt{x_s^2 + y_s^2}$
- distance behind the shower front = h

Lateral distribution function w and pancake function f are normalized

$$\int_0^\infty f(h,r) \, dh = \int w(r) \, dr = 1$$

making $J^{0}(t_{s})$ the net charge and $J^{1}(t_{s})$ and $J^{2}(t_{s})$ the net transverse currents

The radiation fields are calculated from the vector potential, including retardation (Cherenkov) effects $\mathcal{D} \stackrel{1}{=} m P \frac{|dt_o|}{2} m P (1 - m \vec{\beta} - \hat{m})|$

$$A^{\mu}(t_o, \vec{x_o}) = \int d^3 \vec{x}' \, \frac{j^{\mu}(t_r, \vec{x}')}{\mathcal{D}}$$

$$\mathcal{D} \stackrel{1}{=} nR \left| \frac{dt_o}{dt_r} \right| \stackrel{2}{=} nR \left(1 - n\vec{\beta} \cdot \hat{n} \right) \right|_{\text{ret}}$$
$$n_{GD} = 1 + n_\rho \rho(z)$$

Lateral distribution

Points: CONEX-MC simulation

Charge excess & drift velocity

Stokes

Stokes parameters: I, Q, U, V

Linear polarization angle: 2 ϕ =atan(U/Q)

Circular polarization = V/I

$$I = \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|_{i,\mathbf{v}\times\mathbf{B}}^{2} + |\mathcal{E}|_{i,\mathbf{v}\times(\mathbf{v}\times\mathbf{B})}^{2} \right)$$
$$Q = \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|_{i,\mathbf{v}\times\mathbf{B}}^{2} - |\mathcal{E}|_{i,\mathbf{v}\times(\mathbf{v}\times\mathbf{B})}^{2} \right)$$
$$U + iV = \frac{2}{n} \sum_{0}^{n-1} \left(\mathcal{E}_{i,\mathbf{v}\times\mathbf{B}} \ \mathcal{E}_{i,\mathbf{v}\times(\mathbf{v}\times\mathbf{B})}^{*} \right) .$$

Fair weather, 30 deg, X_{max}=693 g/cm²

Shower parameters depend on atmospheric electric field

Interference of emission from different heights

Electric fields in different layers are in opposite directions

Destructive interference depends on relative arrival times, or distance to shower axis. Intensity pattern will have a ring-like structure.

Signal is linearly polarized along direction of atmospheric electric field

Circular polarization in thunderstorm events

Electric fields in different layers are at an angle

The pulses from the upper layer arrive with a delay with respect to the pulses from the lower layer resulting in a change of the polarization angle over the duration of the pulse, seen as circular polarization.

Measured signal has strong circular polarization (Stokes V/I ≠ 0)

See: Trinh et. al. (2016) Physical Rev. D 95, 083004

Fair weather, Vertical, X_{max}=540 g/cm²

Stokes parameters (100 -- 200 MHz)

Summary & Conclusions:

MGMR3D Gives a realistic physics-based estimate of the radio footprint

- intensity
- polarization
- time structure & frequency content
- handles complicated current profile
- Code is fast and can be used in chi-square search

Ref: PRD97(2017)0230005; code available upon request

Observations; intensity footprint

A reconstructed thunderstorm event

