

Update on GRAND simulations

Olivier and Anne

GRAND White Paper workshop Aug 22-24 2018

OUTLINE

Summary of what was presented in the last calls since February and partly new things

- Updates on the sensitivity study
- Radio morphing vs Zhaires
- Frequency band
- Machine learning

What's new in the sensitivity study

- Energy correction if pion is primary in radio morphing (minor)
- Extended star shape pattern since for heigh-energetic events also antennas outside the Cherenkov cone see a detectable signal, now fits to cone selection cut
- Bug fix in treatment of refraction index in the propagation fixed by Matias (done recently):
 - \rightarrow Added planes at larger distances (max. 99km from Xmax) added
 - → has to be still checked in detail, results for sensitivity in good agreement with former ones
- Calculation of the mountain slope used in the application of the antenna response
- Antenna response cross-check with free-space propagation
- Clustering in new analysis: new: trigger for 4 neighbouring antennas out of 8 surrounding antennas, arranged in a SQUARED box, for test antenna initial:4 out of 8, but arranged in ANY shape, as long as the 8 antennas were separated less than 3 steps

Enlargement of the reference shower

- For the planes closer to Xmax: adopt to the cone selection,
 - \rightarrow antenna cone does not start any more at Xmax, now at the tau decay
 - $\rightarrow\,$ we observed that also antennas outside the Cherenkov cone see a detectable signal
- Recent fix in Zhaires' treatment of the refractive index:
 - \rightarrow planes in far distanst to Xmax (up to 99km instead of 79km from Xmax) included

Checks done

RadioMorphing

 Larger reference shower Efield computation

- Wider cone opening
- More distant planes after Zhaires bug fixed
- Slides to be added

• Small effect on sensitivity in the end (<10%) but much more antennas in events.

<u>July:</u>

Cones: 19948 Radio sim: 13211 Trigged events: 8721 Clustered events: 6208 (<Nants>=30) **August:** Cones: 17853 RadioSim: 14489 Trigged events (5+ ants): 9068 Clustered events: 6215 (<Nants>=115)

Effect of mountain slope @antenna

Bumpy ground inducing a large variation of slopes because slope is computed on the very local area surrounding the antenna (~30m radius)

 \rightarrow many missing antennas (θ >90°) + large amplitude variation!

Effect of mountain slope @antenna

Effect of the antenna response

http://www.iap.fr/grand/wikigrand/index.php? title=File:GRANDsimstatus May2018.pptx

Sandra presentation @ Nijmegen meeting

8

Effect of the antenna response

- For details see: wiki GRANDSimStatus_May2018
- 2 alternative approaches:
 - ground effect included in antenna response (only if signal coming from above antenna horizon → conservative)
 - Alternative antenna response computation
 Free space simulation + analytical computation for ground effect (complex topograhies discarded → conservative)
 - 1) Compute attenuation during propagation analytically
 - 2) Use <u>free-space antenna model</u> to compute response
 - Free propagation if Fresnel ellipsoid above ground.
 - Analytical formulas for diffraction computation otherwise
 - Several topographies considered in the doc, only spherical Earth implemented so far for GRAND.
 - compute (frequency-dependant) attenuation for these events, assuming «flat-Earth-like» topography within Fresnel range

Results: ground vs free space

- → Checking «agressive» scenario (2s threshold)
- Very similar results between ground & free space (<+10%)
- But significantly more antennas in FreeSpace events (<N>: 47 vs 30)
- → A lot of work for a very similar result ⁽²⁾ but gives a nice « robustness check » of our exposure computation ⁽²⁾.
- ➔ A 3rd way being explored in Argentina (thx to Matias): point source simulation + ground

HS1 limit

 <u>Final</u> result for a 3years all-flavor exposure on HS1 (10000km²+1km step) in 50-200MHz, with 5+ antenna cluster above 2sigma threshold

 Flux limit = 7.9 10-9 GeV/cm²/s/sr

~4 10⁻¹⁰ GeV/cm²/s/sr when extrapolated to GRAND200k

 Initial limit: for HS1: 7.2 10⁻⁹ GeV/cm²/s/sr (7500km²+800m step) For GRAND200k 2.2 10⁻¹⁰ GeV/cm²/s/sr (200'000km²+800m step)

=> Limits presented so far (Nijmegen) seems to be robust!

Sensitivity study - summary

- All elements of sensitivity computation chain now tested.
 - \rightarrow recent fix in Zhaires: test still ongoing
 - \rightarrow next step: error on trigger rate for radio morphing with statistics
- New limit now seems robust & reliable
- Aggressive limit is ~2x worst than initial, mostly because of clustering strategy + different array/step size.

Outlook

- Look for other hotspots (Tian-Shan cosmic ray station (Kazakhstan) \rightarrow contact to D. Kostunin KIT)
- Include 'athmosphere' events
- Impact of frequency optimisation
- Layout optimisation (step size, real grid != square)

The Radio Morphing recipe

Cross-check radio morphing

Example shower: electron, 1.05 EeV, zen=89.5°, az=50° (GRAND conv), h=2200m Toymodel array, slope of 5deg

Reference shower: electron, 0.1 EeV, zen=88.5°, az=220° (GRAND conv), h=1700m

→ Radio morphing can nicely reproduce features as the Cherenkov ring and strength of signal

Cross-check radio morphing

Highest differences at the edges of the Cherenkov cone

 \rightarrow signal drops exponentially, sensitive to the smallest offset in the positions of the ring

Cross-check radio morphing

'LDF' of EW component 10 Zhaires simulations vs radio morphing run with 10 different reference shower

→ reference showers had energy of 0.1EeV → "flatter LDF gets scaled up"

=> better for low-energetic shower (don't get missed)

=> for high-energetic shower: more antennas trigger, but for events which should nevertheless be detected)

Antenna positions for one shower at several angles to the shower axis

Radio morphing – comparison to a set of showers

Example events from HS1 neutrino set

Radio morphing – comparison to a set of showers

As expected: electric field from radio morphing tends to be slightly to higher due to the choice of the reference shower (difference decreasing slightly after filtering)

Cross-check frequency range (by Aswathi Balagopal - KIT)

- Same study as performed for IceTop (arXiv:1712.09042)
- Antenna response of a dipole antenna used
- ZHAireS simulation with 1ns binning, Crs and neutrinos

Bug in sampling rate while applying antenna response led first to 70-150MHz band

Triggering and reconstruction of air shower using neural networks

(by Florian Führer and Tom Charnock – IAP)

<u>Training set</u> Supervised training with simulated data (ZHAireS) >150k samples, 50% with signal and 50% only with noise

- Toy model antenna array:
 - rectangular array of 35 x 35 antennas
 - slope of 5°
- Cosmic rays (p): E=1-100EeV, zenith=65-85deg
- Expected neutrino distribution in energy and arrival direction for GRAND
- Simulations include:
 - antenna response
 - white noise $V_{rms} = 15 \mu V$
 - filtered to 50-200MHz

Triggering and reconstruction of air shower using neural networks

Save/send data containing signal

Preliminary results

Comparison of the <u>NN-based</u> trigger to a conventional one Total accuracy increases form 0.69 to 0.72

	Simulation		
Network Threshold 60 μV		Signal	Noise
	Signal	0.43 0.42	<2E-3 0.04
	Noise	0.57 0.58	~1 0.96

Accurancy = number of correctly classified time traces

Reduces data stream from 100kHz to < 5kHz

Note: Tested on 50% Signal and 50% Noise

Threshold applied to all 3 Voltage components separately Value of 60µV chosen to maximize the classification accuracy

OUTLOOK:

- Open questions:
 - Improvement from coincidence
 - Computational performance/energy consumption \rightarrow How to put on antenna?
- Currently we are producing more data, needed to
 - Evaluate whether SN or data limited
 - Do statistics on full events, i.e. how well are events recovered
 - Train reconstruction network

Summary

- Radio morphing ready for publication
 - calculation of the arrival time still to be fixed (but not urgent)
- Frequency band study done
 - best best 100-180 MHz for neutrinos and Crs
- Machine Learning ongoing
 - production of simulation for training data ongoing, run now with fixed version of Zhaires
 - current effort focussed on trigger network
 - \rightarrow at the moment slightly better than threshold trigger

Appendix

Characterisation of HS1

25

Characterisation of HS1

10 000 km2 area

Leading particle study

leading particle gets all the energy And a toymodel array

 → trigger for radio mophing and zhaires simulations
 → 8 antennas triggered in one component, threshold: 2sigma

Subshower study

Several possible primaries for Zhaires simulation (but most event have one or one dominant particle) And a toymodel array

→ trigger for radio mophing and zhaires simulations

 \rightarrow 8 antennas triggered in one component, threshold: 2sigma

Alternative antenna response computation

1) Compute attenuation during propagation analytically Use free-space antenna model to compute response 2)

[•] diffraction angle, measured from incidence face (0 face)

Antenna effective length to incoming wave with polarization // to antenna arm With ground f = 100MHz f = 50MHz f = 50MHz f = 50MHz f = 50MHz ho response for zenith >90° because source

HS1 topography

• Large fraction of events (~80%*) with 5+ antennas with short Fresnel range (<5km before antenna) + <u>~plane</u> ground (σ_{Δ} =1.5m) in this Fresnel range (*: not weigthed)

➔ Possible to compute (frequency-dependant) attenuation for these events, assuming «flat-Earth-like» topography within Fresnel range.

Stat study on 20000 showers 1600 from v2 1200

- 15642 showers kept (rest is beyond ¹⁰ 200X200km² square, no topography for initial ⁸⁰ study) ⁶⁰
 - Initial study: 13980 trigged (20+ antennas @ 400m step) +418 showers discarded. <Nants>=318
 - New study: 12447 trigged. <Nants>=284

Effect of threshold

• Large effect of antenna trigger threshold on limit.

–On 60k array:

• 30µV:

2.7 10-9 GeV/cm²/s/sr

•45µV:

3.3 10-9 GeV/cm²/s/sr (x1.2)

• 75μV: 6.6 10⁻⁹ GeV/cm²/s/sr (x2.5)

-On HS1:

- 30µV: 7.9 10-9 GeV/cm²/s/sr
- •45µV:

1.2 10-9 GeV/cm²/s/sr (x1.5)

•75µV:

2.0 10-9 GeV/cm²/s/sr (x2.5)

Comparison/changes in initial analysis

Footnote: bug found in initial analysis on cluster selection: original limit 2 10⁻⁹ for 60k sim \rightarrow now 2.2 10⁻⁹ GeV/cm²/s/sr

- Result: initial analysis slightly more optimistic: 3years limit to E⁻² flux:
 - 2.6 10⁻⁹ GeV/cm²/s/sr (new) vs 2 10⁻⁹ GeV/cm²/s/sr (initial)
- Possible cause for remaining difference: new clustering selection more selective (4 out 8 closest neighbourgs in new analysis vs 8 antennas chain in initial) : when no cluster, limit = 1.6 10⁻⁹ in new vs 1.9 10⁻⁹ in initial
- RadioMorphing (2σ threshold) consistent with cone: 2.7 10-9 GeV/cm²/s/sr

Preliminary results

Positive = Signal Negative = No signal

Comparison of the NN-based trigger to a conventional one

	Neural Network	Threshold (60µV)	
Classification accuracy	0.72	0.69	-
True trigger rate	0.43	0.42	
False trigger rate	<2E-3	0.04 Reduces da from 100kH	ta stream Iz to < 5kHz
True negative rate	~1.0	0.96	
False negative rate	0.57	0.58	

Note: Threshold applied to all 3 Voltage components separately Value of $60\mu V$ chosen to maximize the classification accuracy