The Physics Potential and Performance study at the CEPC Mangi Ruan

SM is **NOT** the end of story...

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry
- Most issues related to Higgs

m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)²!?

Key: a precise Higgs factory

- Higgs mass ~ 125 GeV, it is possible to build a Circular e+e- Higgs factory (CEPC), followed by a proton collider (SPPC) in the same tunnel
- Looking for Hints (from Higgs) at CEPC \rightarrow direct search at SPPC

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 10B Z boson Medium Energy Booster(4.5Km)

Booster(50Km

- Precision test of the SM Low Ene
 - Low Energy Booster(0.4Km)

IP₂

(240m) oton Linac

e+ e- Linac

- IP4
- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 07/19/18

Complementary

IP3

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

07/19/18

Higgs @ LHC

07/19/18

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~ o(10⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

Seminar@CPPM

Complementary 8

Status of W/Z physics study in CEPC

- The prospect of W/Z physics study in CEPC are under study
- Mainly based on projection from LEP

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z threshold scan	$3.2ab^{-1}$
$A_{FB}^{0,b}$	1.7%	0.1%	Z threshold scan	$3.2ab^{-1}$
$A^{0,\mu}_{FB}$	7.7%	0.3%	Z threshold scan	$3.2ab^{-1}$
$A_{FB}^{0,e}$	17%	0.5%	Z threshold scan	$3.2ab^{-1}$
R_b	0.3%	0.02%	Z pole	$3.2ab^{-1}$
R_{μ}	0.2%	0.01%	Z pole	$3.2ab^{-1}$
$N_{ u}$	1.7%	0.05%	ZH runs	$5ab^{-1}$
m_W	33 MeV	2-3 MeV	ZH runs	$5ab^{-1}$
m_W	33 MeV	1 MeV	WWthreshold	$2.5 \mathrm{ab}^{-1}$

Physics Potential

- The nature of Higgs boson & EWSB, + flavor physics...
 - Higgs signal strengths (In kappa framework): expected accuracy roughly 1 order of magnitude better than HL-LHC
 - Absolute measurement to the Higgs boson: 2-3% level accuracy of Higgs boson width, 10⁻³ 10⁻⁵ up limit to Higgs invisible/exotic decay modes (improved by at least 2 orders of magnitude comparing to HL-LHC)

 Improve EW measurement precision by at least 1 order of magnitude Seminar@CPPM

Pheno-studies: EFT & Physics reach

precision reach at CEPC with different sets of measurements

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

Performance

- Determined by
 - Detector geometry
 - Reconstruction algorithm
- Characterized at
 - Physics Objects
 - Higgs Signal
 - Benchmark Physics Analyses

Two classes of Concepts

Seminar@CPPM

- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, **Baseline**)
 - + Silicon tracking (SiD-like)
- Low Magnet Field Detector Concept (IDEA)
 - Wire Chamber + Dual Readout Calorimeter

https://indico.ihep.ac.cn/event/6618/

07/19/18

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

Reference design & Arbor

Performance at Lepton Kaon Photon Tau JET

The Simu-Reco Chain at CEPC

Tracking

https://link.springer.com/article/10.1140/epjc/s10052-017-5146-5 CEPC-DocDB-id:148, Eur. Phys. J. C (2017) 77: 591 Seminar@CPPM 18

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Seminar@CPPM

Eur. Phys. J. C (2018) 78:464

Photon

Inhomogeneity degrades the resolution significantly.

Physics requirement: constant term < 1%

Detector geometry defects degrades the mass resolution to 2.2%/2.6% (CEPC-v1/APODIS);

http://iopscience.iop.org/article/10.1088/1748-0221/13/03/P03010 Seminar@CPPM CEPC-DocDB-id (149, 169) 20 https://arxiv.org/pdf/1712.09625.pdf

Tau

- Two catalogues:
 - Leptonic environments: i.e, IITT(ZZ/ZH), vvTT(ZZ/ZH/WW), $Z \rightarrow TT$;
 - Jet environments: i.e, $ZZ/ZH \rightarrow qq\tau\tau$, $WW \rightarrow qq\tau\tau$; _

Ph.D thesis: D. Yu, reconstruction of leptonic objects at e+e- Higgs factory Seminar@CPPM 21

g(Hтт) measurement

- ZH→µµтт
- Extremely Efficient Event Selection
- Signal efficiency of 93% entire SM background reduced by 5 orders of magnitude
 07/19/18 Semin

- ZH→qqтт
- Cone based tau finding algorithm, Compromise the efficiency & purity
- Signal efficiency of 51%

Jets

- Boson Mass Resolution: Separate W, Z and Higgs in hadronic decay mode
 - Essential for Higgs measurement
 - Separate Higgs from Z/W (relatively easy)
 - Separate $H \rightarrow ZZ/WW$ events (challenging)
 - Appreciated in Triplet Gauge Boson Coupling measurements
 - Separate WW (Signal) from ZZ, ISR return Z, etc.

- ...

- Jet Clustering & Single jet response
 - To understand the Degrading induced by Jet Clustering, Matching, etc
 - Search for the most suited jet clustering algorithm (Presumably channel dependent) Understand the Corresponding Systematic

- ..

Massive Boson Separation

07/19/18

Impact of Jet Clustering: Significant

Jet Clustering is Mainly responsible for the tails

Jet energy Scale

Amplitude ~ 1% Large JES observed at Leading Jet (Correlated), and at overlap region (Increasing of Splitting)

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ Seminar@CPPM

Physics Objects: Tamed

Higgs Signal at APODIS

CEPC-RECO-2018-002 CEPC-Doc id 174, 175 $H \rightarrow \gamma \gamma$ at CEPC-v4/Simplified geometry

Asymmetric tails in CEPC-v4 induced by geometry defects need careful geometry corrections

Arbor: photon reconstruction

ECAL Barrel of ILD/CEPC_v1

Angular Correlation of EM Shower energy response Seminar@CPPM

Arbor: photon reconstruction

H to gluons: total visible mass

	$\mu\mu$	$\gamma\gamma$	di_gluon	bb	СС	WW^*	ZZ^*
Total	45000	48000	48000	45000	46000	47000.	45000
$Pt_ISR < 1GeV$	-	95.52%	95.14%	95.37%	95.27%	95.19%	95.22%
$Pt_neutrino < 1 GeV$	-	-	89.35%	39.00%	66.30%	37.41%	41.42%
costheta < 0.85	-	-	67.27%	28.58%	49.23%	37.03%	40.91%

07/19/18

Higgs to bb, cc, gg

Higgs to WW, ZZ

Table 2. Benchmark resolutions ($\sigma/Mean$) of reconstructed Higgs boson mass, comparing to LHC results.

		$\mathrm{Higgs} \! ightarrow \! \mu \mu$	$ ext{Higgs} \rightarrow \gamma \gamma.$	$Higgs \rightarrow bb$
	CEPC (APODIS)	0.20%	$2.59\%^{1}$	3.63%
07/19/18	LHC (CMS, ATLAS)	${\sim}2\%~[19,~20]$	${\sim}1.5\%~[21,22]$	$\sim 10\%$ [23, 24]

¹ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen & Yacine Haddad

• M. McCullough, 1312.3322

07/19/18

Exotic: Higgs invisible decays

Assuming sigma(ZH)*Br(H->inv) = 200 fb

Invisible up limit at CEPC: ~0.3% at 95% C.L

An Analysis Example (Dan): g(HTT) at qqH

- Cone based tau finding: di-tau system
- The other particles are define as the di-jet system: to distinguish the qqTT background
- Isolated tracks are intensionally defined as tau candidate: be distinguished by the VTX

	m	m _{jj-recoil}
Signal: Z(qq)H(тт)	91.2	125
Z(ττ)H(qq)	125	91.2
ZZ	91.2	91.2

Ph.D thesis of D. Yu

Higgs width measurement

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total}^{*}Br(H \rightarrow XX)$
- Branching ratios: determined simply by - $\sigma(ZH)$ and $\sigma(ZH)^*Br(H\rightarrow XX)$
- Γ_{total}: determined from:
 - $\sigma(ZH) (~g^{2}(HZZ)) \\ \sigma(ZH)^{*}Br(H \rightarrow ZZ) (~g^{4}(HZZ)/\Gamma_{total})$
 - $\sigma(ZH)^*Br(H\rightarrow bb),$ $\sigma(vvH)^*Br(H\rightarrow bb),$ $\sigma(ZH)^*Br(H\rightarrow WW),$ $\sigma(ZH)$

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)^*Br(H->bb)$: relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 07/19/18 Seminar@CPPM

Higgs benchmark analyses

Mostly done with CEPC-v1 geometry @ 250 GeV c.m.s...

Issues to be addressed

- Tracking
 - Dedx/material effect correction (induces o(100) MeV bias in Higgs mass at in H->mumu) (20, 30, 20)
 - Development, Performance analysis & Integration of CEPC tracking (Arbor & Conformal & ...) (50, 90, 90)
- PFA
 - Cluster energy estimator development
 - Photon (EM Shower) Geometry dependent energy correction (50, 90, 20)
 - HAD? (40, 50, 50)
 - Usage of Timing information... (60, 90, 80)
 - Optimization of HCAL geometry (50, 60, 70)
- Lepton ID & P ID:

- Urgency, Importance, Difficulties
- Integration & Usage of Timing information (60, 80, 20)

Issues to be addressed

- Composited object finder: **CORAL** (finding Pi0, Kshort, Lambda, J/Psi, ...)
 - Framework is ready... and lots of performance study and optimization awaits (40, 90, 50)
- Jets

Urgency, Importance, Difficulties

- Jet Clustering: finding the color singlet? (40, 90, 90)
- Distinguish between 2 jet, 3 jet, 4 jet, 5 jet, 6 jet events.... (80, 80, 60)
 - Mila's analysis (ZH->6 jets) gives a very good example
- Jet Flavor Tagging (90, 99, 80)
 - The efficiency of reconstruct 2nd Vertex in Z->cc events is ONLY 20%!!!
- Separation of gluon to quark jets? (50, 50, 50)
- Usage of Deep learning at reconstruction... (30, 90, 50)
- ...Lots Lots of Detector Optimization & Integration....

Summary

- CEPC, a super Higgs/W/Z factory
- Physics Potential
 - Higgs:
 - Absolute determination of Higgs couplings, width...
 - 1 order of magnitude improvement w.r.t HL-LHC (Signal Strength)
 - Exotic decay: 2-3 orders of magnitude better than HL-LHC
 - EW: boost by at least 1 order of magnitude
 - Rich program on Flavor physics
- Performance at the baseline design (APODIS + Arbor)
 - High efficiency/accuracy reconstruction of all key physics objects
 - Clear Higgs signature in all SM Higgs decay modes
 - Clear distinguish between the Signal and SM backgrounds
 - Fulfills the physics requirements of the CEPC Higgs operation

Summary

- CDR in finalization: long to do list towards the TDR
 - Software & Reconstruction
 - Analysis:
 - Anything beyond the Higgs Rates measurements
 - Detector design & optimization...
- You ideas & Participations are essential & more than welcome!

backup

Summary

- The Particle Flow oriented detector is well established and serves as the baseline detector for the CEPC CDR studies
 - High efficiency/accuracy reconstruction of all key physics objects;
 - Clear Higgs signature in all SM Higgs decay mode
 - Mature software/reconstruction tool/team
- APODIS, Optimized for the CEPC collision environments
 - Significantly reduced B-Field (15%), #readout channels (75% in ECAL) & HCAL layer-thickness (20%) & cost (15%/30% w.r.t CEPC-v1/ILD)
 - Same Higgs performance & enhanced Pid Performance
 - Iterate with hardware studies
- Todo:
 - Physics study, especially flavor tagging & EW measurements (τ leptons)
 - Towards the TDR, Integration, Sub detector modeling, Systematic Studies

软件队伍

吴志刚 顶点优化

 新人:赵祥虎
 于丹:轻子甄别
 新人:赖培筑
 安芬芬:

 软件-计算
 PFA, tau
 喷注
 Pid, 软件

Benchmark detector for CDR: APODIS (A PFA Oriented Detector for HIggS factory. a.k.a CEPC_v4)

	qqH au au	qqH inclusive bkg	ZH inclusive bkg	ZZ	WW	singleW	singleZ	2 <i>f</i>
total generated (scaled to 5 ab^{-1})	45597	678158	357249	5711445	44180832	17361538	7809747	418595861
1st preselection	45465	677854	310245	5039286	42425195	1267564	1398362	148401031
2nd preselection	45145	174650	226059	293306	12452091	125735	117306	547402
$N_{ au^+} > 0, N_{ au^-} > 0$	24674	7342	33721	93955	723989	33887	54386	103642
$20 GeV < M_{\tau^+ \tau^-} < 120 GeV$	24284	6290	32344	88245	597480	24927	36039	56615
$70 GeV < M_{qq}$ <110 GeV	22937	2103	4887	65625	21718	738	1893	556
$\frac{100 GeV < M_{qq}^{Rec}}{< 170 GeV}$	22703	2045	4524	23789	13154	315	306	193
efficiency	49.97%	0.31%	1.26%	0.41%	0.04%	<0.01%	<0.01%	< 0.01%

Table 9 Cut Flow of MC sample for $qqH \rightarrow \tau\tau$ selection on signal and inclusive SM backgrounds

Benchmark measurements

Key SOFT ingredients

http://cepcdoc.ihep.ac.cn

Search Results

[DocDB Home] [New] [Search] [Last 20 Days] [List Authors] [List Topics] [List Events] [Help]

CEPC DocDB-doc- #	Title	Author(s)	Topic(s)	Last Updated
<u>176-v1</u>	Fast simulation of the CEPC detector with Delphes	Gang LI	Simulation: Full/Fast Simulation Software Journal Publications	17 May 2018
<u>175-v2</u>	Higgs Signal Reconstruction at CEPC-v4 Baseline Detector when CEPC Operate at 240GeV	YongFeng Zhu	<u>Software</u> <u>Higgs Physics</u>	13 May 2018
<u>174-v1</u>	Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR	Hang Zhao	Simulation: Full/Fast Simulation Higgs Physics	10 Apr 2018
<u>173-v1</u>	Detector Geometry in Model CEPC IDEA	<u>Yin Xu</u>	<u>Implementation into Full</u> <u>Simulation</u> <u>Software Framework</u> <u>General of CEPC</u>	27 Mar 2018
<u>172-v1</u>	Performance study of particle identification at the CEPC using TPC dE/dx information	fenfen An	TPC Physics at CEPC	15 Mar 2018
<u>171-v1</u>	Reconstruction of physics objects at the Circular Electron Positron Collider with Arbor	<u>Manqi RUAN</u>	Physics at CEPC General	06 Mar 2018
<u>170-v1</u>	Optimization for CEPC vertex	<u>Zhigang Wu</u>	<u>VTX</u>	10 Jan 2018
<u>169-v1</u>	PFA Oriented ECAL Optimization for the CEPC	<u>Hang Zhao</u>	Simulation: Full/Fast Simulation Calo	27 Dec 2017
<u>166-v3</u>	<u>Jet Energy Deposition Studies with CEPC Electromagnetic Calorimeter, Hadronic Calorimeter and Muon</u> <u>Detector</u>	<u>Jifeng Hu</u> et al.	Calo Muon Reconstruction Higgs Physics General of CEPC	14 Nov 2017
<u>168-v1</u>	Mannual of the CEPC software	<u>Gang LI</u>	Software	02 Nov 2017
<u>167-v1</u>	Full Simulation Software at CEPC	Chengdong Fu	Software	23 Oct 2017
<u>165-v1</u>	Physics Impact of the Solid Angle Coverage at CEPC	Peizhu Lai	Detector Design Physic Analysis	17 Oct 2017
<u>164-v1</u>	Jet Reconstruction at CEPC	Peizhu Lai	Detector Design Physic Analysis	17 Oct 2017

http://cepcsoft.ihep.ac.cn/

CEPC Software	Guides Releases Packages News GitLab	E
Introduction - Installation and Quick Start - Quick Start Install CEPC Software	Install CEPC Software Estimated reading time: 3 minutes This page will guide you on fully installing CEPC software on the local machine. Install CEPCEnv	 Edit this page Request docs changes Issues in GitLab Content on this page:
CEPC Software on CVMFS Docker Image CEPCEnv	CEPCEnv is a tool used for managing the installation and environment of CEPC software. In order to install CEPC software, the CEPCEnv toolkit should be installed first. Install CEPCEnv with the following command:	Install CEPCEnv Initialize CEPCEnv Install CEPC Software
Software Architecture	curl -sSL http://cepcsoft.ihep.ac.cn/package/cepcenv/sc	Requirements Available CEPC Software Versions
Performance • Analysis Examples •	Change [CEPCENV_DIR] to where you want to install. If CEPCENV_DIR is omitted, CEPCEnv will be installed in the current directory.	Install CEPC Software Configure CEPC Software Root Setup CEPC Software Environment
Computing	The setup scripts setup.sh and setup.csh could be found in the directory after the installation. They are used for the initialization of cepcenv command.	Frequently Asked Questions

07/19/18

5 commands & you got the cepc soft installed on an SL6 machine

CEPC Higgs Analyses

Higgs Physics @ CEPC-v1: event rate measurements almost fully covered (mostly with old reconstruction...)

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 – 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	P(Neutron → γ) = 1-5%
Charged Kaons**	86 – 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathbb{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	P(uds → b) = 1% P(c → b) = 10%
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

