SIMDET 2018, 29-31 October 2018, LPNHE Paris

An introduction to Silicon Detectors with focus on applications at Hadron Colliders

Michael Moll CERN EP-DT, Geneva, Switzerland

Detector Technologies

EP-DT

Outline

- I. Basics of Silicon Detectors for High Energy Physics Applications
 - The basic concept of Semiconductor Detectors: A reverse biased pn-junction
 - Silicon Detectors at the Large Hadron Collider (LHC) at CERN
 - Upgrade of the Large Hadron Collider (HL-LHC)
 - Timeline, challenges & motivation to study and understand radiation damage
 - Recent developments
 - MAPS sensors and sensors with intrinsic gain for fast timing applications
- II. Introduction to Radiation Damage in Silicon Detectors
 - What is Radiation Damage?
 - Mitigation techniques: What can we do against radiation damage?
 - Examples: p-type strip sensors, 3D sensors

• III. Why do we need TCAD simulations (introduction)?

- Example: Complex sensor structure: 3D sensor
- Example: Simulation of irradiation effects

Summary & Further reading

....See presentations of Joern Schwandt

and Marco Bomben

I.Basic operation principle of a silicon sensor

Solid State Detectors – Why silicon?

Some characteristics of silicon crystals

- Small band gap $E_g = 1.12 \text{ eV} \Rightarrow E(e-h \text{ pair}) = 3.6 \text{ eV} (\approx 30 \text{ eV for gas detectors})$
- High specific density 2.33 g/cm³ ; dE/dx (M.I.P.) \approx 3.8 MeV/cm \approx 10⁶ e-h/µm (average)
- High carrier mobility $\mu_e = 1450 \text{ cm}^2/\text{Vs}$, $\mu_h = 450 \text{ cm}^2/\text{Vs} \implies \text{fast charge collection (<10 ns)}$
- Very pure < 1ppm impurities and < 0.1ppb electrical active impurities</p>
- Rigidity of silicon allows thin self supporting structures
- Detector production by microelectronic techniques
 - \Rightarrow well known industrial technology, relatively low price, small structures easily possible

 \Rightarrow sophisticated commercial TCAD tools available for sensor simulation

Alternative Semiconductors

Diamond

- GaAs
- Silicon Carbide
- Germanium
- GaN

	Diamond	SiC (4H)	GaAs	Si	Ge	
Atomic number Z	6	14/6	31/33	14	32	
Bandgap E_g [eV]	5.5	3.3	1.42	1.12	0.66	
E(e-h pair) [eV]	13	7.6-8.4	4.3	3.6	2.9	
density [g/cm ³]	3.515	3.22	5.32	2.33	5.32	
e-mobility $\mu_e [cm^2/Vs]$	1800	800	8500	1450	3900	
n-mobility μ_h [cm ² /Vs]	1200	115	400	450	1900	

Low field mobility!

How to obtain a signal?

Intrinsic semiconductor

 In a pure intrinsic (undoped) semiconductor the electron density n and hole density p are equal. n = p = n.

For Silicon:
$$n_i \approx 1.45 \cdot 10^{10}$$
 cm

Ionizing particle passing through Silicon

 4.5.10⁸ free charge carriers in this volume, but only 3.2.10⁴ e-h pairs produced by a M.I.P. (minimum ionizing particle)

Need to reduce number of free carriers, i.e. <u>deplete</u> the detector

Solution: Make use of reverse biased p-n junction (reverse biased diode)

Doping, Resitivity and p-n junction

e.g. Phosphorus

• Resistivity

- carrier concentrations n, p
- carrier mobility μ_n , μ_p

$$\rho = \frac{1}{q_0} (\mu_n n + \mu_p p)$$

	detector grade	electronics grade	
doping	≈ 10 ¹² cm ⁻³	≈ 10 ¹⁷ cm ⁻³	
resistivity ρ	≈ 5 kΩ·cm	≈1 Ω·cm	

• Doping: n-type Silicon

- add elements from Vth group ⇒ donors (P, As,..)
- electrons are majority carriers

• Doping: p-type Silicon

- add elements from IIIrd group
 ⇒ acceptors (B,..)
- holes are majority carriers

• p-n junction

- There must be a single Fermi level !
- \Rightarrow band structure deformation
- \Rightarrow potential difference
- \Rightarrow depleted zone

Solving the Poisson equation for an abrupt p-n junction diode

Below depletion (V<V_{dep})

- Depletion zone x_n growing with $w \propto \sqrt{V}$
- Only charge generated inside depleted volume will be detected
- Charge generated in 'neutral zone' (field free zone) will recombine
- Depletion Voltage V_{dep}
 - Sensor depleted of free charge carriers
 - Electric field throughout complete device
 - Complete sensor volume sensitive (active)
 - Example:
 - d = 300 µm
 - N_{eff} = [P] =1.5×10¹² cm⁻³ ($\rho \approx 3k\Omega cm$)
 - $V_{dep} \approx 100V$
- Full charge collection only for (V>V_{dep})

effective space charge density N_{eff}

Depletion Zone: Properties

The depletion voltage can be determined by measuring the capacitance versus reverse bias voltage. The capacitance is simply the parallel plate capacity of the depletion zone.

 Segmentation of the p⁺ layer into strips (Diode Strip Detector) and connection of strips to individual read-out channels gives spatial information

typical thickness: 300μm (150μm - 500μm used)

• using n-type silicon with a resistivity of $\rho = 2 \text{ K}\Omega \text{cm} (\text{N}_{\text{D}} \sim 2.2 \cdot 10^{12} \text{cm}^{-3})$

results in a depletion voltage ~ 150 V

- Resolution σ depends on the pitch p (distance from strip to strip)
 - e.g. detection of charge in binary way (threshold discrimination) and using center of strip as measured coordinate results in

$$\sigma = \frac{p}{\sqrt{12}}$$

typical pitch values are 20 $\mu m-$ 150 μm

 \Rightarrow 50 μm pitch results in 14.4 μm resolution

• Simulation: Current density, minimum ionizing particle entering with 45° angle

PhD thesis: Thomas Eichhorn 2015

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -11-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -12-

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -13-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -14-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -15-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -16-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -17-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -18-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -19-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -20-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -21-

Simulation: Thomas.Eichhorn@kit.edu

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -22-

• Simulation: mip, 45° angle

Signals induced on electrodes (Integration gives collected charge)

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -23-

Simulation: Thomas.Eichhorn@kit.edu

The Charge signal

Collected Charge for a Minimum Ionizing Particle (MIP)

 Mean energy loss dE/dx (Si) = 3.88 MeV/cm \Rightarrow 116 keV for 300µm thickness • Most probable energy loss $\approx 0.7 \text{ xmean}$ \Rightarrow 81 keV 200 events • 3.6 eV to create an e-h pair 150 \Rightarrow 108 e-h / µm (mean) \Rightarrow 72 e-h / µm (most probable) numbar 100 -• Most probable charge (**300** μm) 50 $\approx 22500 \text{ e}$ $\approx 3.6 \text{ fC}$

Most probable charge $\approx 0.7 \times$ mean

Signal to noise ratio (S/N)

Silicon Detectors at the Large Hadron Collider at CERN

CERN & LHC - Large Hadron Collider

LHC experiments located at 4 interaction points

• CERN:

- 22 member states
- ~13000 scientists (Users)
- 4300 staff or paid personnel
- Budget(2017) ~1100MCHF
- LHC installed in existing LEP tunnel (27 Km)
 - ≈ 4000 MCHF (machine+experiments)
 - 1232 dipoles B=8.3T
 - pp $\sqrt{s} = 14 \text{ TeV}$ L_{design} = 10³⁴ cm⁻² s⁻¹
 - Heavy ions

 (e.g. Pb-Pb at √s ~ 1000 TeV)
- Circulating beams: 10.9.2008
- Incident: 18.9.2008
- Beams back: 19.11.2009
- 2012: Run 1 up to 2 x 4 TeV
- 2015: Run 2 at 2 x 6.5 TeV
- 2018: up to 2.1 x 10³⁴ cm⁻² s⁻¹ ...excellent performance!
- 2019: LS2...2021: Run 3
- 2024: LS3...2026: HL-LHC

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -27-

Accelerator:

- □ 1232 high-tech superconducting magnets
- □ magnet operation temperature: 1.9 K (-271 ^oC)
- \rightarrow LHC is "coldest" place in the universe
- Inumber of protons per beam: 200000 billions
- Inumber of turns of the 27 km ring per second: 11000
- number of beam-beam collisions per second: 40 millions
- □ collision "temperature": 10¹⁶ K

Detectors:

- □ size of ATLAS: ~ half Notre Dame cathedral
- □ weight of CMS experiment: 13000 tons (more than Eiffel Tour)
- number of detector sensitive elements: 100 millions
- □ cables needed to bring signals from detector to control room: 3000 km
- □ data in 1 year per experiment: ~10 PB (20 million DVD; more than YouTube, Twitter)

LHC Experiments

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -30-

LHC Experiments

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -31-

Silicon Detectors in HEP

- 4 layers & 2 x 3 disks: silicon pixels (~ 1m²)
- 124 million pixels (100x150µm²)
- Resolution: σ(rφ) ~ 10 μm, σ(z) ~ 25μm

Present LHC Tracking Sensors

CMS Tracker insertion

Micro-strip Silicon Detectors

Highly segmented silicon detectors have been used in Particle Physics experiments for 30 years. They are favourite choice for Tracker and Vertex detectors (high resolution, speed, low mass, relatively low cost)

Main application: detect the passage of ionizing radiation with high <u>spatial</u> resolution and good efficiency. Segmentation → position Pitch ~ 50µm

Resolution ~ 5µm

Hybrid Pixel Detectors

hip pixel

Solder bumr

HAPS – Hybrid Active Pixel Sensors

- segment silicon to diode matrix with high granularity $(\Rightarrow$ true 2D, no reconstruction ambiguity)
- readout electronic with same geometry ۰ (every cell connected to its own processing electronics)
- connection by "bump bonding"

silicon sensor 250 µm

readout chip

requires sophisticated readout architecture

sensol

180 µm

Hybrid pixel detectors are used in LHC experiments: ATLAS, ALICE (soon monolithic), CMS and LHCb

Solder Bump: Pb-Sn

Flip-chip technique

LHC Silicon Tracking Detectors

Silicon tracking detectors are used in all LHC experiments: Different sensor technologies, designs, operating conditions,....

ALICE Pixel Detector

LHCb VELO

ATLAS Pixel Detector

CMS Strip Tracker IB

CMS Pixel Detector

ALICE Drift Detector

ALICE Strip Detector

ATLAS SCT Barrel

Monolithic Pixel Detectors

- Combine sensors and all or part of the readout electronics in one chip
 - No interconnection between sensor and chip needed
- Many different variations with different levels of integration of sensor and readout part
- Use of "standard" CMOS processing:
 - Wafer diameter (8")
 - Many foundries available, lower cost per area (mass production)
 - thin detectors possible (O(50 μm Si))
 - Small cell size high granularity, reach O(20 μm x 20 μm)
 - Possibility of stitching (combining reticles to larger areas)
- Very low material budget
- CMOS sensors installed in STAR, BELLE2 experiments
- ALICE ITS upgrade 2019/20 based on MAPS sensors
- Option for ATLAS outermost HL-LHC pixel layer

Summary: Silicon Sensors in HEP

Main sensor concepts

p-type

Hybrid Pixel Detector

Monolithic CMOS Pixel Detector

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -39-

Need inter strip isolation!

Upgrade of the Large Hadron Collider at CERN

The LHC Upgrade Program

• HL-LHC luminosity upgrade (Phase II) (L_{peak} = 7.5 x10³⁴ cm⁻²s⁻¹) in ~2026

- LS2 (now!): ALICE, LHCb major upgrades; ATLAS and CMS minor upgrades [Phase I]
- LS3: ATLAS and CMS: Major upgrades [Phase II]

<u>Challenges</u>: Build detectors that operate after 4000 fb⁻¹; Pile up, Radiation, Rates

Motivation and Challenge

- LHC Detectors: Detectors are suffering from radiation!
- LHC upgrade: New concepts developed, some open challenges
 - LHC upgrade towards High Luminosity LHC (HL-LHC) after LS3 (~2024-26); expect 4000 fb⁻¹ (x7 nominal LHC)

- FCC Future Circular Collider
- Wigger Eco Week
 20 m diameter

FCC-hh:2043 (FCC-ee:2039,HE-LHC: 2040)

 Radiation levels innermost pixel layer (30ab⁻¹, without safety factor): ~ 6x10¹⁷ n_{eq}/cm², ~400MGy

Semiconductor detectors will be exposed to hadron fluences equivalent to more than 10¹⁶ n_{eq}/cm² (HL-LHC) and more than 6x10¹⁷ n_{eq}/cm² (FCC)
 → detectors used today at LHC cannot operate after such irradiation!

Strong efforts ongoing (LHC Experiments, FCC study groups, RD50 collaboration) to understand physics of radiation damage and develop radiation harder devices.

RD50–Radiation Hard Semiconductor Devices for very high luminosity colliders (55 Institutes, 300 researcher) www.cern.ch/rd50

Radiation Damage

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -43-

Radiation Damage – Microscopic Effects

• Spatial distribution of vacancies created by a 50 keV Si-ion in silicon.

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -44-

NIEL – Non Ionizing Energy Loss

• Displacement Damage function

 Normalization of radiation fields to 1 MeV neutron equivalent damage (n_{eq})

$$\Phi_{eq} = \kappa_x \, \Phi_x$$

 $\begin{array}{l} \kappa_p \ = 0.57 \mbox{ (23 GeV protons)} \\ \kappa_p \ = 1.85 \mbox{ (26 MeV protons)} \\ \kappa_\pi \ = 1.14 \mbox{ (192 MeV pions)} \\ \kappa_n \ = 0.92 \mbox{ (TRIGA reactor neutrons)} \end{array}$

y (hm)

• NIEL Hypothesis:

- Assumption: NIEL scaling of damage parameters
- Applied to predict damage of radiation fields in HEP
- <u>"NIEL violation</u>" observed:
 - Material dependence
 - Proton vs. neutron damage

Simulation: Vacancies in $(1\mu m)^3$ after 10^{14} particles/cm²

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -45-

Shockley-Read-Hall statistics

- Impact on detector properties can be calculated if defect parameters are known:
 - $\sigma_{n,p}$: cross sections

 $\Delta \mathbf{E}$: ionization energy

 N_t : concentration

Radiation Damage Summary

• Macroscopic bulk effects:

• Signal to Noise ratio is quantity to watch (material + geometry + electronics)

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -47-

Summary: Basics of Radiation Damage in Silicon Sensors

Two general types of radiation damage to the detector materials:

Influenced by impurities in Si – Defect Engineering is possible!

> Same for all tested Silicon

• Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL)

- displacement damage, built up of crystal defects -

Change of effective doping concentration & acceptor/donor removal (higher depletion voltage, under- depletion)

Increase of leakage current (increase of shot noise, thermal runaway)

III/ **Increase of charge carrier trapping** (loss of charge)

materials! • Surface damage due to Ionizing Energy Loss (IEL)

- accumulation of positive in the oxide (SiO₂) and the Si/SiO₂ interface affects: interstrip capacitance (noise factor), breakdown behavior, ...
- **Impact on detector performance and Charge Collection Efficiency** (depending on detector type and geometry and readout electronics.)

Signal/noise ratio is the quantity to watch

 \Rightarrow Sensors can fail from radiation damage !

Can be optimized!

How to make silicon detectors radiation harder?

The RD50 Collaboration

RD50: 63 institutes and 371 members 53 European institutes

Austria (HEPHY), Belarus (Minsk), Belgium (Louvain), Czech Republic (Prague (3x)), Finland (Helsinki, Lappeenranta), France (Paris, Orsay), Germany (Bonn, Dortmund, Erfurt, Freiburg, Goettingen, Hamburg (2x), Karlsruhe, Munich(2x)), Italy (Bari, Perugia, Pisa, Trento, Torino), Kroatia (Zagreb), Lithuania (Vilnius), Netherlands (NIKHEF), Poland (Krakow, Warsaw(2x)), Romania (Bucharest (2x)), Russia (Moscow, St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona(3x), Santander, Sevilla (2x), Valencia), Switzerland (CERN, PSI, Zurich), United Kingdom (Birmingham, Glasgow, Lancaster, Liverpool, Manchester, Oxford, RAL)

7 North-American institutes

USA (BNL, Brown Uni, Fermilab, LBNL, New Mexico, Santa Cruz, Syracuse)
1 Middle East institute; Israel (Tel Aviv)
2 Asian institute; China(Beijing), India (Delhi)

- LPNHE, UPMC, Université Paris-Diderot, CNRS/IN2P3, (Giovanni Calderini, Marco Bomben,)
- Laboratoire de l'Accélérateur Linéaire Centre Scientifique d'Orsay (Abdenour Lounis, ...)

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -50-

Approaches to develop radiation harder solid state tracking detectors

Defect Engineering of Silicon

Deliberate incorporation of impurities or defects into the silicon bulk to improve radiation tolerance of detectors

- **Needs:** Profound understanding of radiation damage
 - microscopic defects, macroscopic parameters
 - dependence on particle type and energy
 - defect formation kinetics and annealing

Examples:

- Oxygen rich Silicon (DOFZ, Cz, MCZ, EPI)
- Oxygen dimer & hydrogen enriched Si
- Pre-irradiated Si
- Influence of processing technology

New Materials

- Silicon Carbide (SiC), Gallium Nitride (GaN)
- **Diamond** (CERN RD42 Collaboration)
- Amorphous silicon, Gallium Arsenide
- **Device Engineering (New Detector Designs)**
 - p-type silicon detectors (n-in-p)
 - thin detectors, epitaxial detectors
 - 3D detectors and LGAD Low Gain Avalanche
 - Cost effective detectors
 - Monolithic devices HV-CMOS

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -51-

Scientific strategies:

- Ι. **Material engineering**
- **Device engineering** Π.
- III. **Change of detector** operational conditions

CERN-RD39 (closed, now part of RD50) "Cryogenic Tracking Detectors" operation at 100-200K

Note: TCAD simulations

^{are} helpful/essential

for all those approaches!

to reduce charge loss


```
    Why will we use p-type strip/pixel sensors (n-in-p) for the LHC upgrade in ATLAS/CMS?
```

 Why are segmented sensors^(*) build on p-type silicon radiation harder?

* 300 μ m thick

Pad

Sensor Signal: Pad vs. Strip/Pixel

Strip

d

- Signal = Induced charge on read-out electrode
 - Described by Shockley-Ramo Theorem
 - Charged induced on electrode by moving charge can be calculated from the weighting potential (field)

$$Q = -q \cdot \left(\phi_W(\vec{x}_2) - \phi_W(\vec{x}_1) \right)$$

- Total collected charge in both cases
 100% (Q = q) when charges have
 reached the electrodes, however
 - Diode: 50% from (+q); 50% from (-q)
 - Strip: 87% from (+q); 13% from (-q)

 In a p-in-n strip sensor the holes give a higher contribution to the (m.i.p.) signal than the electrons!

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -53-

Device engineering: p-in-n vs. n-in-p (or n-in-n)

p-in-n silicon, under-depleted:

- Charge spread degraded resolution
- Charge loss reduced CCE

Comments:

- Instead of n-in-p also n-in-n devices could be used
- Reality is much more complex: Usually double junctions form leading to fields at front and back!

n-in-p silicon, under-depleted:

- •Limited loss in CCE
- •Less degradation with under-depletion
- •Collect electrons (3 x faster than holes)

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -54-

E-Field after irradiation: *"double junctions"*

Investigation by measurement

n-in-p sensor still "p-type" (i.e. highest field at front electrode) after high level of radiation

Dominant junction close to n+ readout strip for FZ n-in-p

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -55-

Double Junction

• **Double Junction = Polarization Effect**

Segmented sensors: n⁺ vs. p⁺ readout

less trapping, multiplication at segmented electrode

A comment on "depletion voltage" and "type inversion" in highly damaged detectors

- Irradiation leads to a strong modification of the electric field within the sensor
 - inhomogeneous space charge distribution
 - "double junction" effects
 - "type inversion" effects

• The meaning of "depletion voltage" (i.e. kink in CV, IV or CCE curve) is not clearly linked to Neff any more , i.e.

depletion voltage V_{dep}____

detector thickness d

is no longer valid.

effective space charge density N_{eff}

- The term "type inversion" is not well defined
 - space charge is position dependent (Neff(x)) and can even change sign over the detector depth (double junction)
 - we are looking at a detector under bias (a "depleted" detector) while the conduction type usually refers to the zero voltage steady state condition

Device Engineering: 3D detector concept

- "3D" electrodes: narrow columns along detector thickness,
 - diameter: 10µm, distance: 50 100µm
- Lateral depletion: lower depletion voltage needed
 - thicker detectors possible
 - fast signal
 - radiation hard

Installed in ATLAS IBL (Inner b-layer) & ongoing developments for LHC phase II (2024)

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -59-

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -60-

TCAD simulations

- Why do we need TCAD simulations for (irradiated) sensors ?
 - Complexity of the problem
 - Coupled differential equations (semiconductor equations)
 - Impact of defects depending on local charge densities, field-strength, ... ("feedback loop")
 - Complex device geometry and complex signal formation in segmented devices
 - Interplay of surface and bulk damage

Example: 3D sensors

Electric field distribution in 3D detector (AI & oxide layer transparent for clarity)

More about TCAD simulations in presentations from Matthieu, Joern,

David & Marco

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -61-

Device simulation: TCAD & signal simulators

- > 10 models (for almost the "same problem")
- Interface and oxide damage play a big role (partly included in models)
- Need: include more defects and parameterization of input parameters, ... work in progress!

Signal simulators

- TCAD simulations are complex (time consuming, no fitting tool!)
- Custom build signal simulators (open code) developed: sensor optimization, parameter fitting

T.Peltola (HIP, Helsinki): CMS & RD50

Voltage [V]

Some TCAD models from literature

TARLE II

• Several models available (non exhaustive list):

COLLECTION (N SENSO	NONEXH DRS AFT	AUSTIVE) OF R A ER HIGH FLUENC	DIATION DAMAGE MODELS USE CE HEAVY PARTICLE IRRADIATIO	ED TO SIMULA ON (SEE TEX	ATE THE ELECTRIC FIELD WITHIN SILICON T). A: ACCEPTOR AND D: DONOR
Model	Туре	Level [eV]	$\sigma_{e,h} [{ m cm}^2]$	$\eta [\mathrm{cm}^{-1}]$	Comment
EVL 2002 [40]	Α	$E_C - 0.525$	1×10^{-15}	_	Tool: Microsoft Excel [116]
	D	$E_V + 0.48$	1×10^{-15}	_	
	_	$E_C - 0.65^{(*)}$	1×10^{-13}	0.4	(*) level for current generation, no space charge
Perugia 2006 [109]	А	$E_C - 0.42$	$2 \times 10^{-15}, 2 \times 10^{-14}$	1.613	Tool: Silvaco [117]
(p-type sensors)	А	$E_C - 0.46$	$5 \times 10^{-15}, 5 \times 10^{-14}$	0.9	
	D	$E_V + 0.36$	$2.5 \times 10^{-14}, 2.5 \times 10^{-15}$	0.9	
	А	$E_C - 0.42$	$2 \times 10^{-15}, 1.2 \times 10^{-14}$	13	
(n-type sensors)	А	$E_C - 0.50$	$5 \times 10^{-15}, 3.5 \times 10^{-14}$	0.08	
	D	$E_{V} + 0.36$	$2 \times 10^{-18}, 2.5 \times 10^{-15}$	1.1	
Glasgow 2008 [110]	А	$E_C - 0.42$	$9.5 \times 10^{-15}, 9.5 \times 10^{-14}$	1.613	Tool: Synopsys [118]
	Α	$E_C - 0.46$	$5 \times 10^{-15}, 5 \times 10^{-14}$	0.9	model adapted from Perugia 2006 [109]
	D	$E_{V} + 0.36$	$3.23 \times 10^{-13}, 3.23 \times 10^{-14}$	0.9	simulation of p-type 3D sensors
KIT 2013 [111]					Tool: Synopsys [118]
(protons)	Α	$E_C - 0.525$	$1 \times 10^{-14}, 1 \times 10^{-14}$	_	$\eta_A = 1.189 \text{ cm}^{-1} \times \phi - 6.454 \times 10^{13} \text{ cm}^{-3}$
(protons)	D	$E_V + 0.48$	$1 \times 10^{-14}, 1 \times 10^{-14}$	_	$\eta_D = 5.598 \text{ cm}^{-1} \times \phi - 3.949 \times 10^{14} \text{ cm}^{-3}$
(neutrons)	А	$E_C - 0.525$	$1.2 \times 10^{-14}, 1.2 \times 10^{-14}$	1.55	
(neurons)	D	$E_V + 0.48$	$1.2 \times 10^{-14}, 1.2 \times 10^{-14}$	1.395	
Delhi 2014 [112]	Α	$E_C - 0.51$	$2 \times 10^{-14}, 2.6 \times 10^{-14}$	4	Tool: Silvaco [117]
	D	$E_V + 0.48$	2×10^{-14}	3	
Perugia 2016 [113]	Α	$E_C - 0.42$	$1 \times 10^{-15}, 1 \times 10^{-14}$	1.613	improving Perugia 2006 [109]
(p-type sensors)	А	$E_C - 0.46$	$7 \times 10^{-15}, 7 \times 10^{-14}$	0.9	$\phi_{eq} \leq 7 imes 10^{15} \ { m cm}^{-2}$
	_	-	$3 \times 10^{-15}, 3 \times 10^{-14}$	-	$7 imes 10^{15} \ { m cm}^{-2} \le \phi_{eq} \le 1.5 imes 10^{16} \ { m cm}^{-2}$
	_	_	$1.5 \times 10^{-15}, 1.5 \times 10^{-14}$	_	$1.5\times 10^{16}~{\rm cm}^{-2} \leq \phi_{eq} \leq 2.2\times 10^{16}~{\rm cm}^{-2}$
	D	$E_V + 0.36$	$3.23 \times 10^{-13}, 3.23 \times 10^{-14}$	0.9	

Table: M.Moll, Displacement Damage in Silicon Detectors, <u>doi.org/10.1109/TNS.2018.2819506</u>

In situ: LHC Experiments

- LHC Experiments operating and "cumulating radiation damage"
- Example: The ATLAS SCT (Silicon Central Tracker)
 - Leakage current in agreement with expectations
 - Annealing during the LHC shutdown and technical stop periods is visible

 Radiation Effects at the

 Departure of the constant of the con

Summary

- Silicon Sensors: based on reverse biased pn-junction (reverse biased diode)
- Silicon Detectors at the LHC and upgrade of LHC
 - Inner tracking at LHC done by silicon detectors
 - Hybrid-pixel (planar and 3D) and strip sensors implemented in LHC experiments
 - Radiation Hard Monolithic sensors for LHC under development (competing for HL-LHC ATLAS)

New sensor developments: Need for TCAD simulations

- Radiation Damage in Silicon Sensors
 - Reason: displacement damage that is evidenced as defect levels in the band gap of the semiconductor (+ some impact of surface damage in segmented sensors)
 - Modification of <u>internal electric field</u> (space charge distribution, <u>depletion voltage</u>, "type inversion", reverse annealing, loss of active volume, ...), defect engineering possible!
 - Increase of <u>Leakage Current</u> and <u>Charge Trapping</u> (same for all silicon materials)
 - Signal to Noise ratio is quantity to watch (material + geometry + electronics)

Radiation tolerant silicon sensors

- Several examples of successful Material and Device Engineering (mitigation strategies) oxygenation, 3D sensors, p-type (n-readout) sensors
- "Hot topics" in R&D on radiation hard silicon sensors
 - Sensors for timing (i.e. with intrinsic gain, acceptor removal); Monolithic sensors; CMOS
 - Reliability of TCAD simulations with defects; characterization of damage beyond 10¹⁶ cm⁻²

- Most references to particular works given on the slides
 - RD50 workshop presentations: http://www.cern.ch/rd50/
 - **Conferences:** VERTEX, PIXEL, RESMDD
- Instrumentation Schools
 - ICFA, EDIT, ESI, CERN & DESY Summer Student Lectures
- Books about silicon tracking detectors (and radiation damage)
 - Helmuth Spieler, "Semiconductor Detector Systems", Oxford University Press 2005
 - C.Leroy, P-G.Rancoita, "Silicon Solid State Devices and Radiation Detection", World Scientific 2012
 - Frank Hartmann, "Evolution of silicon sensor technology in particle physics", Springer 2009 & 2017
 - L.Rossi, P.Fischer, T.Rohe, N.Wermes "Pixel Detectors", Springer, 2006
 - Gerhard Lutz, "Semiconductor radiation detectors", Springer 1999
 - M.Moll, Displacement Damage in Silicon Detectors for High Energy Physics doi.org/10.1109/TNS.2018.2819506
- Research collaborations and web sites
 - CERN RD50 collaboration (http://www.cern.ch/rd50) Radiation Tolerant Silicon Sensors
 - CERN RD39 collaboration Cryogenic operation of Silicon Sensors
 - CERN RD42 collaboration Diamond detectors
 - Inter-Experiment Working Group on Radiation Damage in Silicon Detectors (CERN)
 - ATLAS IBL, ATLAS and CMS upgrade groups

SPARE SLIDES

Michael Moll CERN, Geneva, Switzerland

Test Structures - Simple Diodes

- Very simple structures in order to concentrate on the bulk features
 - Typical thickness: 300µm
 - Typical active area: 0.5 × 0.5 cm²
- Openings in front and back contact
 - optical experiments with lasers or LED

Summary on defects with strong impact on device performance after irradiation

• Most important defects [for details and references see JAP 117, 164503, 2015]

Defect	Transition	Level(s) [eV]	$\sigma_{e,h} [\mathrm{cm}^2]$	Comment
E(30K)	(0/+)	$E_{C} - 0.1$	$\sigma_e = 2.3 \times 10^{-14}$	Not identified extended defect, donor level, contributes in full con- centration with positive space charge to N_{eff} , strongly generated after charged particle irradiation with linear fluence dependence [32], [37], [89].
BD_A	(0/++)	$E_C - 0.225$	$\sigma_e = 2.3 \times 10^{-14}$	Point defect, TDD2, bistable donor existing in configuration A
BD_B	(+/++)	$E_C - 0.15$	$\sigma_e = 2.7 \times 10^{-12}$	and B, strongly generated in O rich material, contributing in full concentration to positive space charge [36], [90], [91]
I_p	(+/0)	$E_V + 0.23$	$\sigma_h = (0.5 - 9) \times 10^{-15}$	Not identified point defect, tentatively V ₂ O or C related defect
	(0/-)	$E_C - 0.545$	$\sigma_e = 1.7 \times 10^{-15} \ \sigma_h = 9 \times 10^{-14}$	[37], generated via second order process (quadratic fluence dependence), strongly generated in O lean material, acceptor level contributing to current and N_{eff} [36], [37], [92], [93]
E_{75}	(-/0)	$E_C - 0.075$	$\sigma_e = 3.7 \times 10^{-15}$	Tri-Vacancy (V_3) , bistable defect existing in 2 configurations:
E4	(=/-)	$E_C - 0.359$	$\sigma_e = 2.15 \times 10^{-15}$	$FFC(E_{75})$ and $PHR(E4,E5)$, E5 is contributing to leakage current,
E5	(-/0)	$E_C - 0.458$	$\sigma_e = 2.4 \times 10^{-15} \ \sigma_h = 2.15 \times 10^{-13}$	linear fluence dependence [37], [94]–[98]
H(116K)	(0/-)	$E_V + 0.33$	$\sigma_h = 4 \times 10^{-14}$	3 non identified extended defects, linear fluence dependence,
H(140K)	(0/-)	$E_V + 0.36$	$\sigma_h = 2.5 \times 10^{-15}$	contributing in full cocentration negative space charge,
H(152K)	(0/-)	$E_V + 0.42$	$\sigma_h = 2.3 \times 10^{-14}$	responsible for <i>reverse annealing</i> [32], [37], [89], [99]
BiOi	(0/+)	$E_C - 0.23$		Dominant Boron related defect (electron trap) in oxygen rich Silicon, created during acceptor removal [100]–[103]

Table: M.Moll, Displacement Damage in Silicon Detectors, doi.org/10.1109/TNS.2018.2819506

LHCb – VELO UPGRADE

Feature	VELO	VELO Upgrade
Sensors	R and φ strips (n on n Si, 2 n on p) 300 μm thick, 0.22 m ² 173,032 strips (~0.2 M) Semicircular geometry	n on p Si Pixels 200 μm thick, 0.12 m ² 41 M pixels L shaped geometry
Distance From Beam	8.2 mm	5.1 mm
Maximum Fluence	5.2 \times 10 ¹⁴ 1 MeV neq cm ⁻²	8×10^{15} 1 MeV neq cm ⁻²
HV Tolerance	500 V	1000 V
# of Modules	42 modules	52 modules
ASIC Readout Rate	1 MHz	40 MHz
Total Data Rate	~150 Gb/sec	2.8 Tb/sec
Power Consumption	~ 1.1 kW (~ 16.5 W/module)	1.6 kW (~ 28 W/module)
Operating Temperature	< -10 °C	< -20 °C
RF Foil thickness	300 μm	250 µm

[Deepanwita Dutta, VERTEX 10/2018]

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -70-

ALICE – ITS UPGRADE

ALPIDE – ALICE pixel detector

- TowerJazz 0.18 μm CIS process
- 2 μm low capacitance (~fF) NWELL diode
- Deep PWELL shields PMOS transistors
- 25 μm thick high resistivity
 1kΩ·cm) epitaxial layer
- Reverse bias (down to -6V) to increase depletion

Summary

New ITS will feature

1000 times higher granularity

3 times lower material budget in the inner barrel

Production of all detector components has started and is advancing well

Detector installation in the cavern in May 2020.

[Serhiy Senyukov, VERTEX 10/2018]

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -71-

CMS Pixel UPGRADE

Small pitch pixel cells

25x100 µm² (baseline)

Aspect ratio under study:

50x50 um²

Innermost layer: 2.3x10¹⁶ n_{eq}/cm² Outer & Service cylinder: 10¹⁵ n_{eq}/cm²

Thin Planar n-in-p sensors:

Optimal d~100 - 150 μm- lower signal unirradiated **Main challenges:**

spark protection, limited space for structures, radiation

3D sensor:

Option for TBPX L1/TFPX R1 Main challenge: complex fabrication

80	50 µm	p'	50 µm	
e ed	_	•	- 2	ł
tive			7.	-

Objective:

Maintain or improve tracking capability with 200PU

Increase granularity

Reduce material

Increase coverage

Pixel Chip & Sensor 250 µm² : 2 billion pixels

Serial powering, CO₂ cooling, Light mechanics

New layout extended to $|\eta|=4$

[Stella Orfanelli, VERTEX 10/2018]

M.Moll, SIMDET 2018, 29-31 October 2018, LPNHE Paris -72-

ATLAS Pixel UPGRADE

- 5 barrel layers:
 - flat section up to z = 500mm
 - inclined section up to z = 1200mm
 - endcap rings up to z = 3000mmm
- coverage of tracks with $|\eta|$ < 4
- about 10.000 hybrid pixel modules
 - planar and 3D sensors
 - CMOS modules considered as a candidate for outermost barrel layer
- 50x50 μm^2 or 25x100 μm^2 pixels
- 2 innermost layers will be replaceable after collecting 2000 fb⁻¹

REQUIREMENTS

- radiation hardness: up to 10 MGy (TID) and $1.4 \times 10^{16} \, n_{eq}/cm^2$ in the innermost layer
- track reconstruction efficiency: > 99% for muons, > 85% for pions and electrons
- fake rate < 10⁻⁵
- robustness against loss of up to 15% of individual channels
- readout:
 - innermost layers: 1MHz
 - outermost layers: 4MHz (L1 track trigger)
 - output bandwidth: up to 5.12 Gb/s per front-end chip
- application of a serial powering scheme for multi-chip modules

- three different sensors to be used
 - 3D sensors for innermost layer
 - $\,$ 100 μm thick planar sensors for L1 $\,$
 - 150 μm thick planar sensors for L2-L4

ATLAS Tracker UPGRADE

- The new inner tracker (ITk) will be an all Si Tracker system
 - Will replace the current ID (Pixels, SCT + TRT)
 - 'All Silicon' -> no TRT
- + 2T magnetic field, ~6m long, ~1m radius & up to $|\eta|{=}4$
- 5 Central and multiple Forward Pixel layers
- 4 Central and 6 Forward Strip layers
- Strips system consists of
 - ~18k Modules
 - 59.87 million channels
 - 165 m² of Silicon

101 Institutes from 22 countries

Silicon Modules consist of:

- Binary readout chips (ABC) and hybrid controller chips (HCC)
 - Glued & wire bonded to a hybrid
 - Data transfer on hybrid at 320 Mbit/s
- Hybrids are glued to the surface of the Si sensor
 - Wire bonds connect Front End ABC channels to Si strips
 - ~ 5200 wire bonds /module
- DC-DC powering allows powering of all modules
 - Unlike SCT each module cannot have own Voltage Cables

[Andy Blue, VERTEX 10/2018]