NS equation of state, phase transitions, tidal deformability and gravitational waves

Michał Bejger (APC/CNRS Paris & NCAC/PAN Warsaw)

GDR RESANET/OG meeting, Paris, 25.9.18

PHYSICAL EFFECTS IN BINARY NEUTRON STAR COALESCENCE WAVEFORMS

dominated by gravitational radiation back reaction - masses and spins appear at high PN order, dynamical tides might be important

tidal effects

complex physics of the merger remnant, multi-messenger source, signature of neutron star EoS

GW spectrum of 'material' binaries (e.g. BNSs)

Phase evolution differs from PP because of extended-body interactions:

$$\Psi(f) = \Psi_{PP}(f) + \Psi_{tidal}(f)$$

 Ψ_{tidal} breaks the post-Newtonian v/c expansion degeneracy.

Binary inspiral vs the sensitivity curve

Frequency-domain signal model $\tilde{h}(f)$ (Fourier transform of h(t)) to compute the matched-filter SNR and compare with the sensitivity curves:

$$ilde{h}(f) = Q(angles) \sqrt{rac{5}{24}} \pi^{-2/3} rac{\mathcal{M}^{5/6}}{r} f_{GW}^{-7/6} e^{-i\Psi(f)}$$

where the frequency domain phase Ψ is (in the point-particle approximation):

$$\Psi(f) \equiv \Psi_{PP}(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3M}{128\mu v^{5/2}} \sum_{k=0}^{N} \alpha_k v^{k/2},$$

with v denoting the orbital velocity:

$$v \propto (\pi \mathcal{M} f_{GW})^{1/3}$$

Signature of matter in binary NS waveforms

Tidal tensor \mathcal{E}_{ij} of one of the components induces quadrupole moment Q_{ij} in the other:

$$m{Q}_{ij} = -\lambda \mathcal{E}_{ij} \quad o \quad \lambda = rac{ ext{size of quadrupole deformation}}{ ext{strength of external tidal field}}$$

In lowest-order approximation:

$$\lambda = \frac{2}{3}k_2R^5$$

 λ - tidal deformability, $k_2 \in (0.05, 0.15)$ - the Love number (dependent on *M* and EOS).

* From the scaling this is a 5PN effect $(v/c)^{10}$

★ Convenient redefinition:
$$\Lambda = G\lambda \left(\frac{GM}{c^2}\right)^{-5} \in (100, 1000)$$

GW170817: initial constraints on dense matter

* Chirp mass $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = 1.188^{+0.004}_{-0.002} M_{\odot},$ * $m_1 \in (1.36, 1.60), m_2 \in (1.17, 1.36),$ * $\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5},$ * High-spin prior $\tilde{\Lambda} \leq 800$, low-spin prior: $\tilde{\Lambda} \leq 900$

Λ is not (only) about *M* and *R*

What about the phase transitions?

(Demorest et al., 2010)

What about the phase transitions?

Strong (destabilizing) phase transitions with a parametric EOS class (Sieniawska et al. 2018 [arXiv:1807.11581], in review):

- * SLy4 crust + polytrope (1) + simple quark bag model (2),
- * (1) \leftrightarrow (2) connected with a density jump $\lambda = n_2/n_1$,
- * Speed of sound $\sqrt{\partial P / \partial \rho} < c$,
- $\star M_{max} > 2 M_{\odot}.$

relativistic polytrope (Tooper 1965) replaces the tabulated EOS. The definition of the pressure *P* and the energy-density ρc^2 are as follows:

$$P = \kappa n^{\gamma}, \quad \rho c^2 = \frac{P}{\gamma - 1} + n m_b c^2, \tag{1}$$

where κ is the pressure coefficient, γ is the index of the polytrope (deciding about its stiffness) and m_b is the mass of the baryon in this phase. The index γ is a parameter of choice; consequently, by demanding the chemical and mechanical equilibrium at n_0 , κ and m_b are fixed. First polytrope ends at some density $n_1 > n_0$, and is connected to a simple bag EOS, describing the quark matter. We use a linear pressure-density relation (Zdunik 2000),

$$P = \alpha(\rho - \rho_*),\tag{2}$$

with α denoting the speed of sound in quark matter, and ρ_* the energy-density of such matter at zero pressure. In order to mimic the phase-transition, the connection features a density jump $\lambda = n_2/n_1$, that in a realistic EOS may be related to e.g., surface tension between two dense phases. The schematic

M(R) diagram

Speed of sound in the quark core $v_s = 1$

Λ on M(R) diagram

Λ on M(R) diagram

$\Lambda_{1.4}$ on M(R) diagram (Annala et al., 2017)

$\Lambda_{1.4}$ on M(R) diagram

M(R) vs $\Lambda_1 - \Lambda_2$

M(R) vs $\Lambda_1 - \Lambda_2$

M(R) vs $\Lambda_1 - \Lambda_2$: strong phase transitions

(EOS differ by only n₀, crust-polytrope connection point)

M(R) vs $\Lambda_1 - \Lambda_2$: strong phase transitions

$\tilde{\Lambda}$ vs $R(m_1)$ (Raithel et al., 2018)

$\tilde{\Lambda}$ vs $R(m_1)$: strong phase transitions

 $(\triangle: m_1 = 1.6 \ M_{\odot}, \square: m_1 = 1.36 \ M_{\odot})$

Conclusions

In arXiv:1807.11581 we study generic features of tidal deformability with strong phase-transition EOS:

- $\star\,$ Softening due to phase transitions decreases A, $\tilde{\Lambda},$
- \star Non-trivial *M*- Λ relation,
- Future observations of GWs can be used to constrain this degree of freedom (e.g. the LIGO-Virgo O3 predictions: a few BNS mergers),
- \star NS radius from GW observations with ${\sim}10\%$ error (?)