Superfluidity in Neutron Stars and Pulsar Glitches

Aurélien Sourie

Institute of Astronomy and Astrophysics Université Libre de Bruxelles, Belgium

GDR Resanet/OG meeting - Paris, 25 september 2018

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00000	00000	00000	O	00

Superconductivity and superfluidity in the laboratory

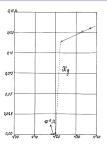
- 2 Superconductivity and superfluidity in neutron stars
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- Other observational manifestations

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion

Superconductivity and superfluidity in the laboratory

- 2 Superconductivity and superfluidity in neutron stars
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- Other observational manifestations

5 Conclusion


Superstars

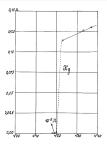
Pulsar glitches 00000 Other obs. evidence 0 Conclusion 00

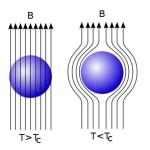
Discovery of superconductivity

In 1911, Onnes and his collaborators discovered that the electric resistance of mercury dropped to almost zero at $T_c \sim 4.2$ K.

The also noticed the existence of **persistent electric currents** in 1914.

< 🗆 I


Superstars


Pulsar glitches 00000 Other obs. evidence 0 Conclusion

Discovery of superconductivity

In 1911, Onnes and his collaborators discovered that the electric resistance of mercury dropped to almost zero at $T_c \sim 4.2$ K.

The also noticed the existence of **persistent electric currents** in 1914.

In 1933, **expulsion of magnetic flux** is observed by Meissner & Ochsenfeld, for $H < H_c(T)$ and $T < T_c$.

--→ new thermodynamic state!

Contrary to type I, type II superconductors exhibit incomplet Meissner effect for $H_{c1}(T) < H < H_{c2}(T)$.

Superstars

Pulsar glitches

Other obs. evidence 0 Conclusion

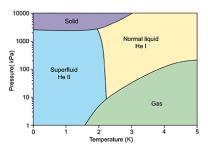
Discovery of superfluidity

During the 1930s, several groups found that, below $T_c \sim 2.17$ K, helium-4 **does not behave** like an ordinary liquid.

The term **superfluidity** was coined by Kapitsa in 1938 by analogy with superconductors.

Superstars

Pulsar glitches


Other obs. evidence 0 Conclusion 00

Discovery of superfluidity

During the 1930s, several groups found that, below $T_c \sim 2.17$ K, helium-4 **does not behave** like an ordinary liquid.

The term **superfluidity** was coined by Kapitsa in 1938 by analogy with superconductors.

Persistent currents in Hell were observed during the 1950s and **Hess-Fairbank effect** was discovered in 1967.

--→ new thermodynamic state!

Terrestria∣ superfluids/superconductors	Superstars	Other obs. evidence	Conclusion
00●00	00000	O	00
Tisza-Landau two-flui	d model		

The association between Bose-Einstein condensation and superfluidity was first advanced by London (1938).

Tisza & Landau postulated that He II contains two distinct components:

- a superfluid that carries no entropy,
- a normal viscous fluid [non-condensed atoms or quasi-particles].

Terrestria∣ superfluids/superconductors	Superstars	Other obs. evidence	Conclusion
00●00	00000	O	00
Tisza-Landau two-flui	d model		

The association between Bose-Einstein condensation and superfluidity was first advanced by London (1938).

Tisza & Landau postulated that He II contains two distinct components:

- a superfluid that carries no entropy,
- a normal viscous fluid [non-condensed atoms or quasi-particles].

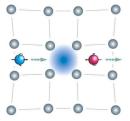
Experiments showed that **Landau was right**. But London and Tisza ideas that superfluidity is related to BEC later proved to be correct.

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00●00	00000	00000	O	00
Tisza-Landau two-flui	d model			

The association between Bose-Einstein condensation and superfluidity was first advanced by London (1938).

Tisza & Landau postulated that He II contains two distinct components:

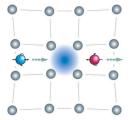
- a superfluid that carries no entropy,
- a normal viscous fluid [non-condensed atoms or quasi-particles].


Experiments showed that **Landau was right**. But London and Tisza ideas that superfluidity is related to BEC later proved to be correct.

This two-fluid model was **extended** to superconductors by Gorter (1955).

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
000●0	00000	00000	0	00
BCS theory (1957)				

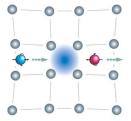
In a superconductor, the dynamical distorsions of the crystal lattice can induce an attractive effective interaction between e^- of opposite spins.


Roughly speaking, e^- can thus form pairs and undergo a BEC below some critical temperature.

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
000●0	00000	00000	O	00
BCS theory (1957)				

In a superconductor, the dynamical distorsions of the crystal lattice can induce an attractive effective interaction between e^- of opposite spins.

Roughly speaking, e^- can thus form pairs and undergo a BEC below some critical temperature.


Rk: The BEC and BCS transition are now understood as two different limits of the same phenomenon.

7 / 25

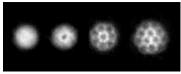
Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
000●0	00000	00000	0	00
BCS theory (1957)				

In a superconductor, the dynamical distorsions of the crystal lattice can induce an attractive effective interaction between e^- of opposite spins.

Roughly speaking, e^- can thus form pairs and undergo a BEC below some critical temperature.

Rk: The BEC and BCS transition are now understood as two different limits of the same phenomenon.

---> **fermionic atoms** could become superfluid, as was confirmed by the discovery of superfluid helium-3 below $T_c \sim 2.5$ mK in 1971.


Superstars

Pulsar glitches

Other obs. evidence 0 Conclusion

Vortex lines & flux tubes

A superfluid can only rotate by forming an array of *quantized vortices*.

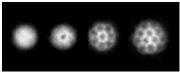
[Madison et al., PRL, 2000]

Quantum of circulation:

$$\kappa = h/m_s$$

Mean surface density of vortex lines:

$$n_{\rm v}=\frac{2\Omega}{\kappa}=\frac{2\,m_{\rm s}\,\Omega}{h}$$


Superstars

Pulsar glitches

Other obs. evidence 0 Conclusion

Vortex lines & flux tubes

A superfluid can only rotate by forming an array of *quantized vortices*.

[Madison et al., PRL, 2000]

Quantum of circulation:

$$\kappa = h/m_s$$

Mean surface density of vortex lines:

$$n_{\nu} = \frac{2\Omega}{\kappa} = \frac{2\,m_s\,\Omega}{h}$$

Likewise, a type II superconductor is threaded by *flux tubes* (or *fluxoids*).

[Hess et al., PRL, 1989]

Quantum magnetic flux:

$$\phi_0 = h/q_s$$

Mean surface density of fluxoids:

$$n_{\Phi} = \frac{B}{\phi_0} = \frac{q_s B}{h}$$

< 🗆 🕨

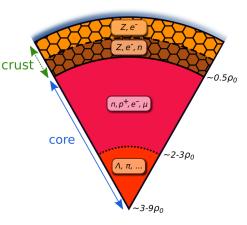
Observatoire de Paris - September, 25th 2018

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00000				

Superconductivity and superfluidity in the laboratory

2 Superconductivity and superfluidity in neutron stars

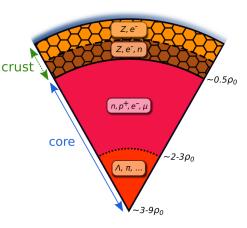
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- Other observational manifestations



< □ →

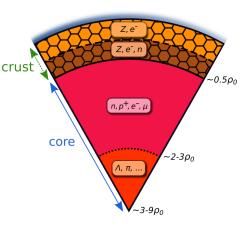
Terrestrial superfluids/superconductors Pulsar glitches Other obs. evidence Conclusion Superstars 0000

Internal composition of a neutron star


 outer crust: ions forming a regular crystal lattice & degenerate e^- ,

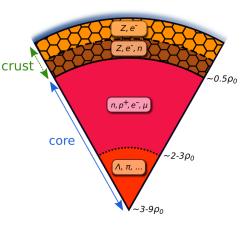
Terrestrial superfluids/superconductors Superstars 00000 Pulsar glitches Other obs. evidence Conclusion 00000 Other obs. evidence C

Internal composition of a neutron star


- outer crust: ions forming a regular crystal lattice & degenerate e⁻,
- inner crust: n − p⁺ clusters, unbound n & degenerate e[−],

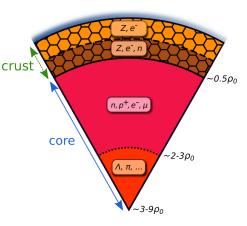
Terrestrial superfluids/superconductors Superstars 00000 Pulsar glitches 0 ther obs. evidence Conclusion 0

Internal composition of a neutron star


- outer crust: ions forming a regular crystal lattice & degenerate e⁻,
- inner crust: n − p⁺ clusters, unbound n & degenerate e[−],
- outer core: homogeneous mixture of n, p⁺ and e⁻,

Terrestrial superfluids/superconductors Superstars 00000 Pulsar glitches Other obs. evidence Conclusion o

Internal composition of a neutron star


- outer crust: ions forming a regular crystal lattice & degenerate e⁻,
- inner crust: n − p⁺ clusters, unbound n & degenerate e[−],
- outer core: homogeneous mixture of n, p⁺ and e⁻,
- inner core: essentially unknown.

Terrestrial superfluids/superconductors Superstars 00000 Pulsar glitches Other obs. evidence Conclusion of a pouttrop star

Internal composition of a neutron star

- outer crust: ions forming a regular crystal lattice & degenerate e⁻,
- inner crust: n − p⁺ clusters, unbound n & degenerate e[−],
- outer core: homogeneous mixture of n, p⁺ and e⁻,
- inner core: essentially unknown.

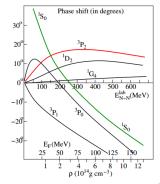
Rk: electrons in neutron stars are **not** superconducting $(T_c \sim 0)$.

•

Terrestrial superfluids/superconductorsSuperstars
00000Pulsar glitches
00000Other obs. evidence
0Conclusion
00Nuclear superfluidity and superconductivity in NSs

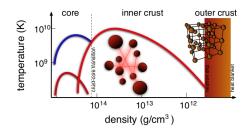
The presence of superfluid nuclear matter in the interior of neutron stars was first suggested by Migdal (1959).

At low enough temperatures, nucleons may **form pairs that can condense** into a superfluid/superconducting phase.

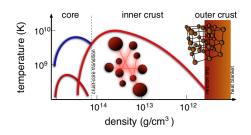

< 🗆)

The presence of superfluid nuclear matter in the interior of neutron stars was first suggested by Migdal (1959).

At low enough temperatures, nucleons may **form pairs that can condense** into a superfluid/superconducting phase.

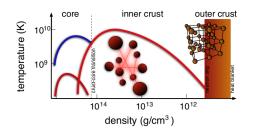

Most attractive pairing channels:

- 1S_0 at low densities
 - \hookrightarrow similar to e^- in a superconductor
- ³P₂ at high densities
 → similar to superfluid ³He



Superstars 00●00 Pulsar glitches 00000 Other obs. evidence 0 Conclusion 00

Critical temperatures


$$ightarrow \, T_c^{
m max} \sim 10^8 - 10^{10}$$
 K

$$ightarrow \, T_c^{\,
m max} \sim 10^8 - 10^{10}$$
 K

Since NSs **rapidly cool down** below T_c^{\max} , they are expected to contain:

- an *isotropic* $({}^{1}S_{0})$ neutron superfluid in the inner crust and in the outer core,
- an anisotropic $({}^{3}P_{2})$ neutron superfluid in the outer core,
- an *isotropic* $({}^{1}S_{0})$ proton superconductor in the outer core,

 $ightarrow T_c^{\max} \sim 10^8 - 10^{10}$ K

Since NSs **rapidly cool down** below T_c^{max} , they are expected to contain:

- an *isotropic* $({}^{1}S_{0})$ neutron superfluid in the inner crust and in the outer core,
- an anisotropic $({}^{3}P_{2})$ neutron superfluid in the outer core,
- an *isotropic* $({}^{1}S_{0})$ proton superconductor in the outer core,

Rk: other superfluid phases may be present in NSs (e.g. np, $n\Lambda$, $\Lambda\Lambda$, ...)

Neutron stars contain (at least!) two dynamical components:

- a plasma of charged particles (e⁻, nuclei in the crust and p⁺ in the core) locked together by the magnetic field,
- a neutron superfluid.

Neutron stars contain (at least!) two dynamical components:

- a plasma of charged particles (e⁻, nuclei in the crust and p⁺ in the core) locked together by the magnetic field,
- a neutron superfluid.

Fluid momenta:

$$\begin{cases} \boldsymbol{p}_{n} = \mathcal{K}^{nn}\boldsymbol{v}_{n} + \mathcal{K}^{np}\boldsymbol{v}_{p} \\ \boldsymbol{p}_{p} = \mathcal{K}^{pn}\boldsymbol{v}_{n} + \mathcal{K}^{pp}\boldsymbol{v}_{p} \end{cases}$$

--→ entrainment effects

Neutron stars contain (at least!) two dynamical components:

- a plasma of charged particles (e⁻, nuclei in the crust and p⁺ in the core) locked together by the magnetic field,
- a neutron superfluid.

Fluid momenta:

$$\begin{cases} \boldsymbol{p}_{n} = \mathcal{K}^{nn}\boldsymbol{v}_{n} + \mathcal{K}^{np}\boldsymbol{v}_{p} \\ \boldsymbol{p}_{p} = \mathcal{K}^{pn}\boldsymbol{v}_{n} + \mathcal{K}^{pp}\boldsymbol{v}_{p} \end{cases}$$

--→ entrainment effects

The hydrodynamic equations of any **relativistic** superfluid mixtures have been derived by Carter et al., using a *variational formalism*.

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00000	0000●	00000	0	00
Quantized lines				

• Neutron superfluid:

$$\kappa = h/(2m_{\rm n}) \quad \xrightarrow{n_v} \quad n_v \simeq 6 \times 10^5 \left(\frac{P}{10 \text{ ms}}\right)^{-1} \text{cm}^{-2}$$

A typical NS contains $\sim 10^{18}$ vortices, which are generally assumed to be aligned with the rotation axis.

• The proton superconductor is usually thought to be of type II with $H_{c1} \sim 10^{15}$ G and $H_{c2} \sim 10^{16}$ G.

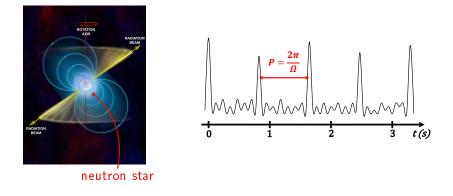
$$\phi_0 = h/(2e)$$
 \dashrightarrow $n_{\Phi} \simeq 5 \times 10^{18} \left(\frac{B}{10^{12} \text{ G}} \right) \text{cm}^{-2}$

A typical NS contains $\sim 10^{30}$ fluxtubes, which may have a very complex structure.

Terrestrial superfluids/super	conductors Superstars	Pulsar glitches	Other obs. evidence	Conclusion

Superconductivity and superfluidity in the laboratory

- 2 Superconductivity and superfluidity in neutron stars
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- 4 Other observational manifestations



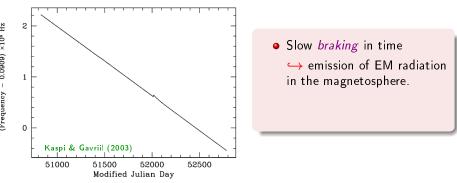
Terrestrial superfluids/superconductors Pulsar glitches Superstars 00000

Other obs. evidence

Conclusion

The pulsar phenomenon

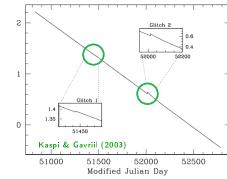
The time evolution of P (or f) can be measured with a very high precision


Superstars

Pulsar glitches 00000

Other obs. evidence

Conclusion


Pulsar frequency glitches

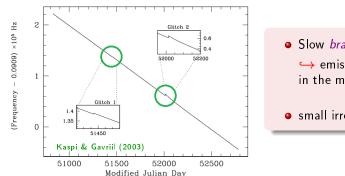
Superstars

Pulsar glitches 0●000 Other obs. evidence 0 Conclusion

Pulsar frequency glitches

• Slow braking in time

 \hookrightarrow emission of EM radiation in the magnetosphere.


• small irregularities: glitches

< 🗆 I

Superstars

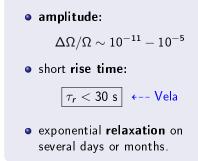
Pulsar glitches 0●000 Other obs. evidence 0 Conclusion 00

Pulsar frequency *glitches*

 Slow *braking* in time
 → emission of EM radiation in the magnetosphere.

• small irregularities: glitches

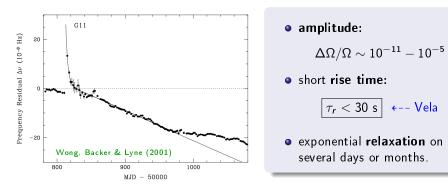
Since 1969, 531 glitches have been observed in 187 pulsars


< □)

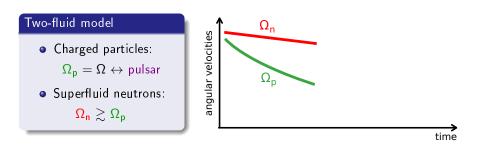
Superstars

Pulsar glitches 0●000 Other obs. evidence 0 Conclusion

Pulsar frequency glitches



Terrestrial superfluids/superconductors 00000 Superstars

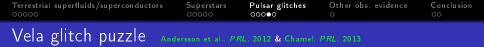

Pulsar glitches 0●000 Other obs. evidence 0 Conclusion

Pulsar frequency glitches

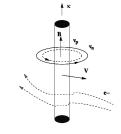
 \rightarrow glitch = manifestation of an internal process probably related to the presence of superfluid matter

Key assumption: the vortices can **pin** to nuclei in the crust.

Two-fluid model • Charged particles: $\Omega_p = \Omega \leftrightarrow pulsar$ • Superfluid neutrons: $\Omega_n \gtrsim \Omega_p$


Once a threshold lag $\Omega_n - \Omega_p$ is reached, some vortices get **unpinned** and are allowed to move **radially** ($\Delta\Omega_n < 0$).

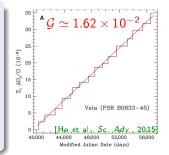
→ angular momentum transfer between the fluids:


$$\Delta \Omega = -I_{\rm n}/I_{\rm p} \times \Delta \Omega_{\rm n} > 0$$

< 🗆 I

Terrestrial superfluids/superconducto	rs Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00000	00000	000●0	O	00
Vela glitch puzzle		L, 2012 & Chamel,	PRL, 2013	

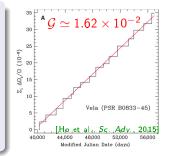
the core superfluid is expected to be strongly coupled to the crust,


picture from K. Glampedakis

- the core superfluid is expected to be strongly coupled to the crust,
- analysis of glitch data:

 $I_{\rm n}/I\gtrsim \mathcal{G}\sim 0.02$

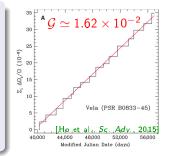
Rk: $I_n^{crust}/I \sim 0.02 - 0.05$



- the core superfluid is expected to be strongly coupled to the crust,
- analysis of glitch data:

 $I_{\rm n}/I \gtrsim \mathcal{G} \times (1 - \langle \varepsilon_{\rm n} \rangle) \sim 0.07$

Rk: $I_n^{crust}/I \sim 0.02 - 0.05$


However, this scenario has been recently **challenged** by considering **crustal entrainment effects** --→ the crust is not enough!

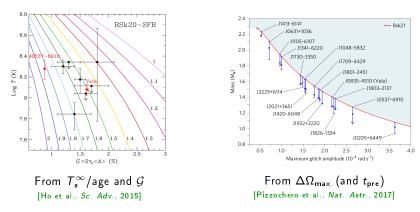
- the core superfluid is expected to be strongly coupled to the crust,
- analysis of glitch data:

 $I_{\rm n}/I \gtrsim \mathcal{G} \times (1 - \langle \varepsilon_{\rm n} \rangle) \sim 0.07$

Rk: $I_n^{crust}/I \sim 0.02 - 0.05$

However, this scenario has been recently **challenged** by considering **crustal entrainment effects** --→ *the crust is not enough!*

--→ possible role of the outer core...

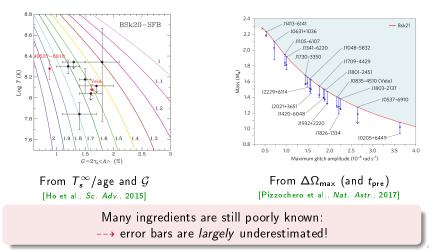

Terrestrial superfluids/superconductors 00000

Superstars

Pulsar glitches 0000● Other obs. evidence 0 Conclusion 00

Mass estimates for giant glitchers

Two recent studies have proposed **complementary** methods to constrain pulsar masses from glitch observations.


< 🗆)

Terrestrial superfluids/superconductors 00000 Superstars

Pulsar glitches 0000● Other obs. evidence 0 Conclusion

Mass estimates for giant glitchers

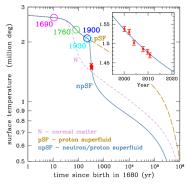
Two recent studies have proposed **complementary** methods to constrain pulsar masses from glitch observations.

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion

Superconductivity and superfluidity in the laboratory

- 2 Superconductivity and superfluidity in neutron stars
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- Other observational manifestations

5 Conclusion

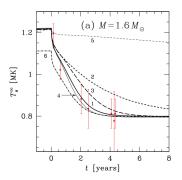

Other possible observational manifestations

- rapid cooling of Cassiopeia A,
- thermal relaxation of transiently accreting NSs during quiescence,
- quasi-periodic oscillations in soft gamma-ray repeaters, ...

Terrestrial superfluids/superconductors Superstars o0000 Pulsar glitches Other obs. evidence Conclusion o0

Other possible observational manifestations

- rapid cooling of Cassiopeia A,
- thermal relaxation of transiently accreting NSs during quiescence,
- quasi-periodic oscillations in soft gamma-ray repeaters, ...

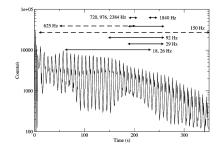


[Ho et al., PoS, 2013]

Terrestrial superfluids/superconductors Superstars o0000 Pulsar glitches Other obs. evidence Conclusion o0

Other possible observational manifestations

- rapid cooling of Cassiopeia A,
- thermal relaxation of transiently accreting NSs during quiescence,
- quasi-periodic oscillations in soft gamma-ray repeaters, ...

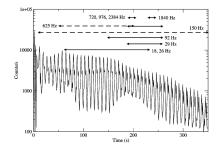


[Shternin et al., MNRAS, 2007]

Terrestrial superfluids/superconductors Pulsar glitches Other obs. evidence Conclusion Superstars

Other possible observational manifestations

- rapid cooling of Cassiopeia A,
- thermal relaxation of transiently accreting NSs during quiescence,
- guasi-periodic oscillations in soft gamma-ray repeaters, ...



[Strohmayer & Watts, ApJL, 2005]

Other obs. evidence Terrestrial superfluids/superconductors Superstars Pulsar glitches Conclusion

Other possible observational manifestations

- rapid cooling of Cassiopeia A,
- thermal relaxation of transiently accreting NSs during quiescence,
- guasi-periodic oscillations in soft gamma-ray repeaters, ...

[Strohmaver & Watts, ApJL, 2005]

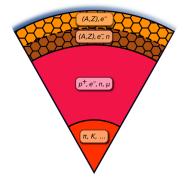
However, many aspects of these phenomena are poorly known...

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion

Superconductivity and superfluidity in the laboratory

- 2 Superconductivity and superfluidity in neutron stars
- Pulsar glitches as a strong support for the presence of superfluid matter in neutron stars
- Other observational manifestations

Terrestrial	superfluids/superconductors	


Pulsar glitches

Other obs. evidence 0 Conclusion ●○

Conclusion

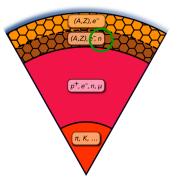
Nuclear superfluidity in NSs was **predicted** long before the discovery of pulsars. Still, some aspects remain **not very well understood**. (e.g. pairing phases, T_c , hydrodynamics, ...).

What we know with confidence:

Terrestrial	superfluids/superconductors	

Pulsar glitches

Other obs. evidence


Conclusion ●○

Conclusion

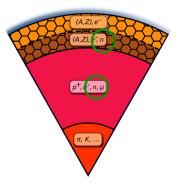
Nuclear superfluidity in NSs was **predicted** long before the discovery of pulsars. Still, some aspects remain **not very well understood**. (e.g. pairing phases, T_c , hydrodynamics, ...).

What we know with confidence:

• ${}^{1}S_{0}$ n-superfluid in the inner crust (and outer core),

Terrestrial	superfluids/superconductors	

Pulsar glitches


Other obs. evidence 0 Conclusion ●0

Conclusion

Nuclear superfluidity in NSs was **predicted** long before the discovery of pulsars. Still, some aspects remain **not very well understood**. (e.g. pairing phases, T_c , hydrodynamics, ...).

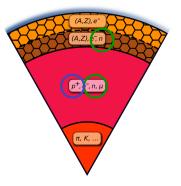
What we know with confidence:

- ${}^{1}S_{0}$ n-superfluid in the inner crust (and outer core),
- ${}^{3}P_{2}$ n-superfluid in the outer core,

Terrestrial	superfluids/superconductors	

Pulsar glitches

Other obs. evidence


Conclusion ●○

Conclusion

Nuclear superfluidity in NSs was **predicted** long before the discovery of pulsars. Still, some aspects remain **not very well understood**. (e.g. pairing phases, T_c , hydrodynamics, ...).

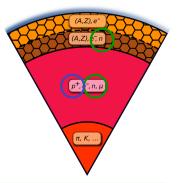
What we know with confidence:

- ${}^{1}S_{0}$ n-superfluid in the inner crust (and outer core),
- ${}^{3}P_{2}$ n-superfluid in the outer core,
- ${}^{1}S_{0}$ p-superconductor in the outer core.

Terrestrial	superfluids	/superconductors

Pulsar glitches

Other obs. evidence


Conclusion ●○

Conclusion

Nuclear superfluidity in NSs was **predicted** long before the discovery of pulsars. Still, some aspects remain **not very well understood**. (e.g. pairing phases, T_c , hydrodynamics, ...).

What we know with confidence:

- ${}^{1}S_{0}$ n-superfluid in the inner crust (and outer core),
- ${}^{3}P_{2}$ n-superfluid in the outer core,
- ${}^{1}S_{0}$ p-superconductor in the outer core.

Fortunately, superfluidity leaves its imprint on various astrophysical phenomena: **glitches**, oscillations, cooling, ...

Terrestrial superfluids/superconductors	Superstars	Pulsar glitches	Other obs. evidence	Conclusion
00000	00000	00000	0	⊙●
Some references				

On superfluidity & superconductivity in NSs:

- J. Sauls, NATO ASI Series C 262, 457-490 (1989)
- N. Chamel, Journal of Astrophysics and Astronomy 38, 43 (2017)

On glitch models and observations:

- B. Haskell & A. Melatos, Int. J. of Mod. Phys. D 24, 1530008 (2015)
- C. Espinoza et al., MNRAS 414, 1679-1704 (2011)

On cooling:

• D. Yakovlev & C. Pethick, ARA&A 42, 169-210 (2004)

On the impact of superfluidity on the GW emission of NSs:

• K. Glampedakis & L. Gualtieri, *arXiv:1709.07049* (2017)

Terrestrial superfluids/superconductors	Pulsar glitches	Other obs. evidence	Conclusion
00000	00000	O	⊙●
Some references			

On superfluidity & superconductivity in NSs:

- J. Sauls, NATO ASI Series C 262, 457-490 (1989)
- N. Chamel, Journal of Astrophysics and Astronomy 38, 43 (2017)

On glitch models and observations:

- B. Haskell & A. Melatos, Int. J. of Mod. Phys. D 24, 1530008 (2015)
- C. Espinoza et al., MNRAS 414, 1679-1704 (2011)

On cooling:

• D. Yakovlev & C. Pethick, ARA&A 42, 169-210 (2004)

On the impact of superfluidity on the GW emission of NSs:

• K. Glampedakis & L. Gualtieri, arXiv:1709.07049 (2017)

Thank you!