Dense Matter

Francesca Gulminelli - LPC Caen, France

$< \rho > \sim \rho_0 \sim 10^{14} \text{ g/cm}^3$ Nucleonic DoF

Dense matter in the universe

& challenges for nuclear physics

Supernova remnant and neutron star in Puppis A (ROSAT x-ray Credit: NASA)

- Best 3D hydro simulations do not yet produce satisfactory explosions of CC supernova
 - Uncertainty in the v dynamics

- 2. Present best EoS modelling cannot yet explain the most massive NS
 - Strangeness couplings at high density ?
 - Transition to quark matter ?

Dense matter in the universe & challenges for nuclear physics

- Present best EoS modelling cannot yet explain the most massive NS
 - Strangeness couplings at high density ?
 - Transition to quark matter ?

 Best 3D hydro simulations do not yet produce satisfactory explosions of CC supernova
 Uncertainty in the v dynamics

The recent detection of GW by LIGO/VIRGO opens an exciting avenue of GW observation from compact objects

- More binary NS merging
- Continuous GW from deformed NS
- R-modes in young sources
- GW from SN

Dense matter in the universe & challenges for nuclear physics

Nuclear modelling needed !

- Present best EoS modelling cannot yet explain the most massive NS
 - Strangeness
 couplings at high
 density ?
 - Transition to quark matter ?

 Best 3D hydro simulations do not yet produce satisfactory explosions of CC supernova
 Uncertainty in the v

The recent detection of GW by LIGO/VIRGO opens an exciting avenue of GW observation from compact objects

dynamics

- More binary NS merging
- Continuous GW from deformed NS
- R-modes in young sources
- GW from SN

Spectrum of BBH inspiral, scale to 1.35-1.35, 45 Mpc

Spectrum of NS-NS inspiral, 1.35-1.35, 45 Mpc

Spectrum of NS-NS inspiral, 1.35-1.35, 45 Mpc

Astro Observable	Baryonic matter	Nuclear physics properties to be modelled	Key nuclear ingredients
SN collapse	Nuclei	Weak interaction out of equilibrium	Weak rates Masses
NS mass and radius	NM	Catalized matter Quark phase?	EoS Hyperon couplings
GW mergers R-modes	NM	F-peak Tidal properties	EoS
NS cooling Glitches	NM and nuclei	Solid-liquid transition	EoS Surface Pairing
R-process Accretion	Nuclei	Strong interaction out of eq.	Strong&weak rates Fission Masses

Astro Observable	Baryonic matter	Nuclear physics properties to be modelled	Key nuclear ingredients
SN collapse	Nuclei	Weak interaction out of equilibrium	Weak rates Masses
NS mass and radius	NM	Catalized matter Quark phase?	EoS Hyperon couplings
GW mergers R-modes	NM	F-peak Tidal properties	EoS
NS cooling <mark>Glitches</mark>	NM and nuclei	Solid-liquid transition	EoS Surface Pairing
R-process Accretion	Nuclei	Strong interaction out of eq.	Strong& weak rates Fission Masses

1)NS mass and radii

Tolman Oppenheimer Volkoff: from general relativity

1)NS mass and radii

2)NS mergers

 The tidal field of the companion induces a mass quadrupole moment which accelerates the coalescence of NS mergers

• Coalescence time is determined by the tidal polarizability
$$\Lambda = \frac{2}{3}k_2\left(\frac{c^2}{G}\frac{R}{M}\right)^5$$

3) Pulsar glitches

- Canonical interpretation: sudden unpinning of superfluid vortices due to the crust-core differential rotation
- Key parameter: crustal moment of inertia
- Can be evaluated from the TOV, if the crust-core transition pressure is known

 Strongly model dependent: requires the knowledge of the EoS AND of the surface energy of n-rich nuclei

How to constrain the Equation of State?

- Discriminate among models
- Ouantify the reliability of the different models
- Predict astro observables with controlled uncertainty intervals

I - Constraining the EOS: ab-initio modelling

Extrapolations needed above n_{sat}

II- Constraining the EoS: NS observation A.W.Steiner et al, MNRAS 2018

- Low mass X-ray binaries in globular clusters
 - Atmosphere model?
 - Interstellar matter abundancies?
 - Hot spots?
 - Functional form of the EoS?

II- Constraining the EoS: NS observation A.W.Steiner et al, MNRAS 2018

II- Constraining the EoS: NS observation A.W.Steiner et al, MNRAS 2018

New constraints from GW170817!

- A.Bauswein et al, ApJ (2017) R(M=1.6)>10.68 km
- L.Rezzolla et al, ApJ (2018) M<2.16 Mo

III - Constraining the EoS: J.Margueron, R.Casali FG PRC 2018

include nuclear physics empirical information

• Start from the energy functional $e(\rho, \delta)$

$$(P = -\frac{de}{d\rho^{-1}} = \rho\mu - \varepsilon)$$

- Nuclear phenomenology is best known around saturation
- Taylor expansion

$$e(\rho, \delta) = e_{IS}(\rho) + e_{IV}(\rho)\delta^2 + O(\delta^4)$$

$$= \left(\boldsymbol{E_0} + \frac{1}{18} \boldsymbol{K_0} x^2 + \dots \right) + \left(\boldsymbol{J_{sym}} + \frac{1}{3} \boldsymbol{L_{sym}} x + \frac{1}{18} \boldsymbol{K_{sym}} x^2 + \dots \right) \delta^2$$

- Empirical parameters $(E_0, \rho_0, K_0, J_{sym}, L_{sym}, K_{sym} \dots)$ are strongly constrained by nuclear experiments (low order)
- Uncorrelate nuclear phy
- Bayesian det

Empirical constraints

III - Constraining the EoS: J.Margueron, R.Casali FG PRC 2018

include nuclear physics empirical information

• Start from the energy functional $e(\rho, \delta)$

$$(P = -\frac{de}{d\rho^{-1}} = \rho\mu - \varepsilon)$$

- Nuclear phenomenology is best known around saturation
- Taylor expansion

$$e(\rho,\delta) = e_{IS}(\rho) + e_{IV}(\rho)\delta^2 + O(\delta^4)$$

$$\delta = \frac{\rho_n - \rho_p}{\rho_0}$$
$$x = \frac{\rho - \rho_0}{\rho_0}$$

$$= \left(\boldsymbol{E_0} + \frac{1}{18} \boldsymbol{K_0} x^2 + \dots \right) + \left(\boldsymbol{J_{sym}} + \frac{1}{3} \boldsymbol{L_{sym}} x + \frac{1}{18} \boldsymbol{K_{sym}} x^2 + \dots \right) \delta^2$$

- Empirical parameters $(E_0, \rho_0, K_0, J_{sym}, L_{sym}, K_{sym} \dots)$ are strongly constrained by nuclear experiments (low order)
- Uncorrelated distribution of empirical parameters within nuclear physics uncertainty gives a physically founded prior
- Bayesian determination of the posterior

Bayesian implementation of the

constraints

• \vec{X} : parameter set; w: filter • Bayes theorem: $P(\vec{X}|w) = P(w|\vec{X})P(\vec{X})$ P(w) = Filter

• Uncorrelated flat prior:
$$p_{prior}(\vec{X}) = \prod_{k=1}^{2(N+1)+3} f(X_k^{min}, X_k^{max}; X_k)$$

• Filters:

• ab-initio EoS (LD)

$$p_{post}(\vec{X}) = \mathcal{N} w_{LD(HD)}(\vec{X}) e^{-\chi^2(\vec{X})/2} p_{prior}(\vec{X}).$$

- NS observation (HD)
 Nuclear masses
- Posterior calculation $p(Y) = \prod_{k=1}^{2(N+1)+3} \int_{X_k^{min}}^{X_k^{max}} dX_k Y(\vec{X}) p_{post}(\vec{X}),$ of observables:

Bayesian implementation of the

constraints

J.Margueron, R.Casali FG PRC 2018 T.Carreau et al, to be submitted

Deremator	Unit	Pri	or	H	D	LD		
Parameter	Unit	Min	Max	Average	σ	Average	σ	
n _{sat}	fm ⁻³	0.15	0.17	0.1600	0.0060	0.1641	0.0049	
E_{sat}	MeV	-17	-15	-16.01	0.61	-15.29	0.25	
Ksat	MeV	190	270	229	24	234	23	
Q_{sat}	MeV	-1000	1000	200	535	-31	362	
Z_{sat}	MeV	-3000	3000	1038	1233	-146	1728	
Esym	MeV	26	38	33.53	3.48	30.71	0.76	
Lsym	MeV	10	80	45.45	17.97	43.66	3.68	
Ksym	MeV	-400	200	-92	136	-202	42	
Qsym	MeV	-2000	2000	913	740	-253	673	
Z_{sym}	MeV	-5000	5000	1463	2216	-114	2868	
m_{sat}^*/m		0.6	0.8	0.70	0.06	0.70	0.06	
$\Delta m_{sat}^*/m$		0.0	0.2	0.10	0.06	0.10	0.06	
b		1	10	5.3	2.7	5.2	2.6	

1) Static observables

• Tighter bounds require further constraints on higher order parameters!

I.Tews, J.Margueron, S.Reddy, arXiv:1804.0273

Tighter bounds require
 further constraints on higher order parameters!

3) Pulsar glitches

T.Carreau et al, to be submitted

3) Pulsar glitches

T.Carreau et al, to be submitted

 $I_{crust}/I_{1.0}$

0P ²³	-0.01	-0.02	0.17	-0.08	-0.05	-0.28	-0.38	0.48	0.78	-0.39	-0.02	0.05	-0.04	0.00	0.02	0.18
LD -	-0.03	0.24	0.27	-0.26	0.08	0.26	-0.04	-0.31	0.45	-0.12	-0.04	0.04	-0.11	0.00	-0.23	-0.03
HU LD	0.03	-0.20	0.14	-0.06	-0.03	-0.11	-0.24	0.31	0.53	-0.25	-0.02	0.04	-0.02	0.56	0.44	0.58
HD	-0.02	0.14	0.25	-0.24	0.08	0.25	-0.04	-0.29	0.41	-0.11	-0.03	0.04	-0.09	0.26	-0.09	0.18
Prior	0.02	0.12	0.18	-0.14	0.02	0.25	0.01	-0.45	0.49	-0.08	0.00	-0.12	-0.17	0.11	-0.09	0.10
nsa Esa Ksa Qsa Isa Esm Ism Ksm Qsm Ism nt In Ant In b P 60 bs																

• Tighter bounds require further high density AND NUCLEAR SURFACE constraints!

Astro Observable	Baryonic matter	Nuclear physics properties to be modelled	Key nuclear ingredients
SN collapse	Nuclei	Weak interaction out of equilibrium	Weak rates Masses
NS mass and radius	NM	Catalized matter Quark phase?	EoS Hyperon couplings
GW R-modes	NM	F-peak Tidal properties	EoS
NS cooling Glitches	NM and nuclei	Solid-liquid transition	EoS Surface Pairing
R-process Accretion	Nuclei	Strong interaction out of eq.	Strong&weak rates Fission Masses

=> Concerning the EoS, tighter bounds require constraining the high order isovector empirical parameters K_{sym}, Q_{sym}

Electron capture and core collapse

- Matter becomes increasingly neutron-rich during core-collapse because of electron capture on nucleons and nuclei
- In the late stage of the collapse, matter is essentially constituted by exotic nuclei around the N=50 and N=82 magic numbers

Electron capture and core collapse

Enclosed Mass (Mo)

- The supernova evolution crucially depends on the ecapture rate.
- In turn, this depends on the mass of exotic N=50 nuclei and their β -decay properties.

0.50- (a)

0.45 0.40 L 0.35-

0.30-U-0.30-U-0.25-U-0.25-0.20 0 1 0

Velocity (10⁴ km/s)

Electron capture and core collapse

- The supernova evolution crucially depends on the e-capture rate.
- In turn, this depends on the mass of exotic N=50 nuclei and their β-decay properties.

EoS and GW signals

Post-merger signals (~100-500 Hz)

A.Radice et al ArXiV 1601.02426

A.Bauswein, arXiV:1508.05493

EoS and GW signals

- Post-merger signals (~100-500 Hz)
 - fundamental quadrupole fluid mode (fpeak) of the differentially rotating postmerger remnant
 - Strongly correlated to the radius=>EoS

A.Bauswein, arXiV:1508.05493

EoS and GW signals

- Spinning NS with asymmetric deformations (~1-10 Hz)
 - Elastic strains in the crust or magnetic fields in the core
 - Too weak for aLIGO and ET
- Unstable r-modes in young sources (~100-500 Hz)
 - Undamped by viscous dissipation if T and ν are high enough
 - Potentially detectable + EM counterpart 10⁻²³
 - Very complex modelling

FIG. 1. Envelopes for the CSM (red) and the MM (black) for the correlation of the tidal polarizabilities Λ_1 and Λ_2 of the two compact stars in GW170817. We show: panel (a) the results for $n_{\rm tr} = n_{\rm sat}$ and no constraint on $\tilde{\Lambda}$, panel (b) for $n_{\rm tr} = n_{\rm sat}$ when additionally enforcing $\tilde{\Lambda} < 800$, and panel (c) for $n_{\rm tr} = 2n_{\rm sat}$ and no constraint on $\tilde{\Lambda}$. We also show the 90% (dashed lines) and 50% (dotted lines) probability contours for the MM (black lines), the CSM (red lines), and compare to the corresponding 90% and 50% contours from the LV analysis (blue lines).

I.Tews, J.Margueron, S.Reddy, INT-PUB-18-014

Drastic improvement if the high density EoS is constrained!

How to further constrain the high density EoS?

Strategy I: high density constraints

P.G.Reinhard, W.Nazarewicz 2016 D.Chatterjee, F.G. 2017 J.Yang, J.Piekarewicz 2017

Recent review: X.Roca-Maza, N.Paar Prog.Part.Nuc.Phys.2018

Constraining the EoS: NS observation

A.W.Steiner et al, MNRAS 2018

Model C: Piecewise polytropic expansion Steiner Lattimer Brown ApJ 2013

Constraining the EoS: NS observation

Piecewise polytropic expansion Steiner Lattimer Brown ApJ 2013

NS mass and the hyperon puzzle

- The highest mass is associated to the highest central density.
- If $\mu(\rho) > m_Y c^2 + U_Y$, hyperon Y should appear
- The appearence of a new degree of freedom softens the EoS=>reduces the mass
- 2M_o neutron star should not exist if U_Y is calculated with microscopic BHF based on experimental bare interactions

A the hyperon puzzle P. Demorest et al., Nature 467 1081 (2010). J. Antoniadis et al., Science, 340, 6131 (2013).

Radius R [km]

The hyperon puzzle: solutions

Pulsar glitches

- In some pulsars "glitches" are observed where the spin rate suddenly jumps to a higher value
- Glitches indicate some internal rearrangement has altered the rotation rate by a small amount.
- Sudden unpinning of the superfluid vortices from the crystal lattice during the slowing down due to the differential rotation between the fast vortices and the slow star
- Angular momentum transfer to the star which spins up

Pulsar glitches

I_c/I>0.07 to explain
 Vela data

$$I \equiv \frac{J}{\Omega} = \frac{8\pi}{3} \int_0^R r^4 e^{-\nu(r)} \frac{\bar{\omega}(r)}{\Omega} \frac{\left(\mathcal{E}(r) + P(r)\right)}{\sqrt{1 - 2GM(r)/r}} dr$$
$$I_{\rm crust} = \frac{8\pi}{3} \int_{R_t}^R r^4 e^{-\nu(r)} \tilde{\omega}(r) \frac{\left(\mathcal{E}(r) + P(r)\right)}{\sqrt{1 - 2GM(r)/r}} dr .$$
$$\Rightarrow P_t > 0.5 \text{ MeV fm}^{-3}$$

Results are extremely model dependent

Neutron star cooling

- Neutron stars are born hot, and cool down via neutrino emission
- Cooling curve can be inferred from luminosity measurements via atmosphere modelling
- Cooling depends on the neutrino emissivity and the heat capacity

Neutron star cooling

- The cooling of very hot proto-neutron star is dominated by the heat capacity of the crust
- ¹S₀ n- superfluidity is the key ingredient, but in-medium effects on the cluster distributions can play a role
- Unfortunately observations are not available

Neutron star cooling

- The v emissivity dramatically depends on the possibility of DURCA: $n \rightarrow p + e + v$ and $p + e \rightarrow n + v$
- Momentum conservation implies $p_{Fn}(\rho) \le p_{Fp}(\rho) + p_{Fe}(\rho) =>$ needs a minimum proton fraction
- The minimum proton fraction allowing DURCA is determined by the EoS
- Enhanced cooling seems excluded, but the subject is still under debate

36

35

34

33

31

30

1.8 M

2.0 M

 s^{-1})

 $Log(L^{\infty}/erg)$

