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The internal structure of neutron stars is still
unknown and many theories are proposed.
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Dense nuclear matter is described by an

equation of state P(p). But what is it?
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Neutron stars with different properties and observational
signatures can be useful for Rns measurements.
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NICER’s main science goal is to measure Rns
for four millisecond pulsars.

Launched in June 2017
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The pulsed emission caused by hot spots on a rotating
neutron star can help measure the compactness.

Front-side hotspaot rotates through the line of sight
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Strong gravity permits seeing beyond

the hemisphere ol the neutron star.

Weak gravity —




Strong gravity permits seeing beyond

the hemisphere ol the neutron star.

Strong gravity
Weak gravity — ‘




The pulsed emission caused by hot spots on a rotating
neutron star can help measure the compactness.

Front-side hotspaot rotates through the line of sight
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The pulsed emission caused by hot spots on a rotating
neutron star can help measure the compactness, but
this depends on the system geometry.
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Iwo main ingredients are necessary o
model the lightcurve of millisecond pulsars.

General relativity Surface emission model
Schwarzschild metric + time delays, Low-magnetic field,
doppler boosts/aberration + oblate star fully-ionized H or He atmosphere
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I 'we can model the lighteurve, it 1s
prelerable to know the neutron star mass.
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NICER now routinely observes four key
target millisecond pulsars.

Analysis is in progress...



There are some difficulties involved with the

lightcurve modelling technique used by NICER.

+ Atmospheric composition?

+ Hot spots properties (these are fitted, but there are
some degeneracies)

+ Difficult to precisely determine the NICER
background (non X-ray and X-ray backgrounds)



What’s new?



Stay tuned...



X-ray observations of thermally-cooling
neutron stars permit obtaining the radius.

To measure the radius, we need to:
+ observe /model the surface emission,
+ know the distance independently:.
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(Quiescent low-mass X-ray binaries are
ideal systems for radlus measurements.

Surface thermal emission at
Tetr ~ 100 K, powered by
residual heat from the deep
crust radiating outwards

~70% hydrogen %

through the atmosphere T iy
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Because of gravitational redshift, the radius
is degenerate with the unknown mass.
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We want to find which equation of state is
common to all these M-R measurements.
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Some constraints have been obtained using
these analytical parameterisations of the EoS.
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There are some difficulties involved with

the surface thermal emission technique.

+ NS atmospheric composition )

+ NS surface temperature distribution

+ NS magnetic field and rotation

+ Need to parameterise the EoS



What’s new?

+ New X-ray data (from Chandra X-ray Observatory)
+ New distances (expected from Gaia DR3)

+ New method (realistic parameterisation of the EoS)



Using a realistic parameterisation of the equation
of stat, we improve on previous estimates.
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X-ray observations of thermally-cooling
neutron stars permit obtaining the radius.

To measure the radius, we need to:
+ observe /model the surface emission,
+ know the distance independently:.
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X-ray observations of thermally-cooling
neutron stars permit obtaining the radius.

To measure the radius, we need to:
+ observe /model the surface emission,
+ know the distance independently:.
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Some LMXBs exhibiting thermonuclear
bursts with Photospheric Radius Expansion.
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The peak flux correspond to the Eddington flux, and

the cooling tail gives the size of the emitting area.
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Different analyses and types of sources
result in different constraints...
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Different analyses and types of sources result

in different constraints...lt’s a heated debate!
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There are some difficulties involved

with the lype | X-ray burst technique.

+ Atmosphere modelling (i.e., the conversion to/from a
blackbody with a colour correction factor £.)

+ Neutron star atmospheric composition

4+ Distance sometimes unknown



What’s new?

+ New method!

4+ New instrument (NICER)

+ New “problem”



Unul recently, the thermal emission was fit with a
Planck function, and a colour-correction was used.
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Recent work
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The observation of type I X-ray burst with NICER

showed the presence of a un-modelled soft-E excess.
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The observation of type I X-ray burst with NICER

showed the presence of a un-modelled soft-E excess.

Burst Peak

Photon flux

Energy (keV)

Keek et al. (2018)



Summary — Current status

Pulse-profile of MSP NICER will produce 4 precise Rns measurements
Quiescent low-mass Some uncertainties related to assumptions.
X-ray binaries Need parameterisation of EOS (or masses).
Isolated neutron stars Atmosphere modelling difficult
(and CCOs) (e.g. magnetic field and composition)

Some modelling uncertainties.

Type-l X-ray bursts Understand the effects of accretion?

Promising technique!

GW from NS-NS merger
But only | event so far

Momept o.f lper’tla Spin-orbit coupling needs decades of data \
(radio timing) P
Moment of inertia Two attempts: AN /
(bow-shock PWN) See Bejger et al. (2002); Romani et al. (2017) 7

Max. rotation of NSs Look for more pulsars and hope for a faster one




Summary — Current results

Pulse-profile of MSP CAN’T TELL YOU!!

Quiescent low-mass

X-ray binaries M YU

Isolated neutron stars Rns ~ 10 = 14 km

(and CCOs)
Type-1 X-ray bursts Rns ~ 11— 13 km
GW from NS-NS merger Rns ~ 10.5 — 13.5 km

Moment of inertia

(radio timing) No results yet

Moment of inertia N /
= 45 m2 _ mani _ J

Max. rotation of NSs Limits from fastest pulsar: Rns< |17 km




