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Primordial Nucleosynthesis

Galactic Cosmic Rays

Helium burning

Carbon-Neon burning

Oxygen burning

Nuclear Statistical Equilibrium

Neutron captures   (s- and  r- processes)

Hydrogen burning
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Main ingredients of   Galactic Chemical Evolution   models

Galactic Chemical Evolution (GCE) 

Stellar properties

(function of mass M and metallicity Z)

- Lifetimes

- Yields (quantities of elements ejected)

- Masses of residues  (WD,  NS,  BH)

- Rates of binary collisions

Collective Stellar Properties

- Star Formation Rate (SFR)

- Initial Mass Function (IMF)

Gas Flows

- Infall

- Outflow

- Radial inflow (in disks)

From theory of

Stellar evolution

and nucleosynthesis

Scale: STARS (106 km)

Observations 

Phenomenological recipes +

Theoretical arguments

Scale: STAR FORMING 

REGIONS (10s-100s pc)

Observationally and 

Theoretically motivated

Scale: GALACTIC AND 

CIRCUMGALACTIC MEDIUM

(several kpc)



Aims  of Galactic  Chemical  Evolution (GCE)  studies

To check / constrain our understanding of stellar nucleosynthesis

(i.e. stellar yields and their dependence on stellar properties), 

either statistically (mean, dispersion) or in  individual objects

To establish a chronology of events in a given system

e.g. when metallicity reached a given value, or when some

stellar source (SNIa, AGB etc.) became important contributor

to the abundance of a given isotope / element

To infer how a system was formed 

(Star Formation Rate, large scale gas mouvements )

e.g. slow infall of gas in case of solar neighborhood

In principle: evolution = function of age

In practice : metallicity ([Fe/H]) of stars is observed (large age uncertainties)

So: evolution = function of [Fe/H] assuming unique age -metallicity relation



Local disk (8 kpc from GC): Composition of nearby young stars and gas is ~ solar 

(But: older stars are more metal poor, by a factor up to ten )

Inner Galactic disk: metal rich young stars and gas (up to 3 times solar) 

Outer Galactic disk: metal poor young stars and gas (down to 1/3 solar) 

The Milky Way : not a simple system

Thin
disk

Thick
disk

An old (9-12 Gyr) metal poor (<Z>~0.2-0.3 solar) and more extended vertically (h~1kpc)THICK disk 

A younger (<9 Gyr), metal rich (<Z>~solar) and  less extended vertically (h~0.3 kpc) THIN disk 



Age - Metallicity Metallicity

distribution

O/Fe vs Fe/H

OLD Models

of Solar

Neighborhood

Constraints:

Local 

column densities 

of gas, stars, SFR

as well as

O/Fe vs Fe/H

(requires SNIa 

for late Fe)

Age ðMetallicity

(large dispersion)

Metallicity  distribution

(requires slow infall)
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Yields of massive stars

Woosley& Weaver 1995

12-40 Mṩ

Nomoto, Kobayashi, Tominaga2013

13-40 Mṩ

Limongiand Chieffi2018

13-120 Mṩ

Maeder, Meynet, Hirschi 2006

15-120 Mṩ

Yields of massive and LIM stars

Pignatariet al. 2016

1.5-60 Mṩ

Yields of LIM stars
Karakas2010 (1-6 Mṩ)

Karakas& Lugaro2016 (1-8 Mṩ

Cristaloet al. 2016 (1-6 Mṩ
Doherty et al. 2014,2015 (7-9 Mṩ)

M/M ṩ

Grids of Stellar yields

in GCE calculations



Santa Cruz

Woosley-

Weaver

1995

Tokyo

Nomoto 

et al. 

2013

Geneva

Maeder,Meynet,

Hirschi 

2006

Roma

Limongi-

Chieffi

2018

Mass 11 - 40 13 - 40 15 - 120 13 - 120

Metallicity (Z/Zṩ) 0 - 1 0 - 2.5 10-8²2 10-3 - 1

Mass loss No No Yes Yes

Hydrostatic Up to Fe-core Up to Fe-core Up to Ne Up to Fe-core

Explosive Yes

+ -

nucleosynthesis

Yes

+ high E 

at low Z

No Yes

Rotation (km/s) 0 0 0 ²800

Not uniform in Z

0 - 150 - 300

at all Z

Isotopic 

composition

H to Zn H to Ge CNO and few 

selected elm.

H to Bi

Yields of massive stars 

for galactic chemical evolution studies



Envelope

H-core

He-core

Heavies

Rotation

Increasessizes of

convective cores

and corresponding

hydrostaticyields

Mixes protons in

He-burningregions

and products

of H- and He-burning

boostingproduction of

CNO,F,Ne22,S-process

and turns

« secondary» elements

into « quasi-primary» ones

ROTATIONAL YIELDS IN A NUTSHELL

N14, C13,N15,O17,018

C12,016,Ne22,s-



Adopted yields of Non Rotating LIMS (Cristallo et al. 2015)

and Rotating massive stars (Limongi and Chieffi 2018)

How to chose which

distribution of   V ROT
to adopt as 

a function of Z ?

A distribution function

favouring

more rotating stars

at lowest metallicities

Producing primary N 

at [Z]~ -3 and

avoiding

overproduction

of s-nuclei at [Z]~ -1



Isotopic

abundances

Up to Zn:

Better than a factor of 2

Mg Al Cl K Sc Ti V

Poorly or

underproduced

Above Zn:

s- nuclei: Better than ~20%

(r-yields fixed to reproduce 

solar r- component)





Yields from WW95 Yields from NKT2013

Dispersion by a factor of 2:

Persistent problem for all sets of yields for (Cl), K, Sc, Ti V                                                              

Still, a triumph for stellar nucleosynthesis and chemical evolution !
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