Gamma-ray astronomy

1

Vincent Tatischeff CSNSM, Orsay, France

Nuclear spectroscopy in the EM spectrum

Gamma-ray line production from:

- Radioactivity
- Nuclear collisions
- Positron annihilation (511 keV)
- Neutron capture (2.2 MeV from n + H)

Astronomy with radioactivities

$\mathbf{Isotope}$	${f Production \ site^a}$	Decay chain ^{D}	$Half-life^{c}$	γ -ray energy (keV)				
				and $intensity^{d}$				
$^{7}\mathrm{Be}$	Novae	$^{7}\mathrm{Be} \xrightarrow{\epsilon} ^{7}\mathrm{Li}^{*}$	$53.2 \mathrm{d}$	478(0.10)				
56 Ni	Type Ia SNe, Core-collapse SNe	$^{56}\mathrm{Ni} \xrightarrow{\epsilon} ^{56}\mathrm{Co}^*$	$6.075 { m d}$	158 (0.99), 812 (0.86)				
		${}^{56}\mathrm{Co} \xrightarrow{\epsilon(0.81)} {}^{56}\mathrm{Fe}^*$	77.2 d	$847\ (1), 1238\ (0.66)$				
57 Ni	Type Ia SNe, Core-collapse SNe	${}^{57}\mathrm{Ni} \stackrel{\epsilon(0.56)}{\longrightarrow} {}^{57}\mathrm{Co}^*$	1.48 d	$1378\ (0.82)$				
		${}^{57}\mathrm{Co} \xrightarrow{\epsilon} {}^{57}\mathrm{Fe}^*$	272 d	$122 \ (0.86), \ 136 \ (0.11)$				
22 Na	Novae	$^{22}\mathrm{Na} \xrightarrow{\beta^+(0.90)} ^{22}\mathrm{Ne}^*$	2.60 y	1275(1)				
$^{44}\mathrm{Ti}$	Core-collapse SNe, Type Ia SNe	$^{44}\mathrm{Ti} \xrightarrow{\epsilon} {}^{44}\mathrm{Sc}^*$	60.0 y	$68 \ (0.93), \ 78 \ (0.96)$				
		$^{44}\mathrm{Sc} \xrightarrow{\beta^+(0.94)} {}^{44}\mathrm{Ca}^*$	$3.97~\mathrm{h}$	1157(1)				
26 Al	Core-collapse SNe, WR stars AGB stars, Novae	$\overset{26}{\longrightarrow} \text{Al} \overset{\beta^+(0.82)}{\longrightarrow} \overset{26}{\longrightarrow} \text{Mg}^*$	$7.2 \cdot 10^5 \text{ y}$	1809 (1)				
60 Fe	Core-collapse SNe	$^{60}\mathrm{Fe} \xrightarrow{\beta^{-}} {}^{60}\mathrm{Co}^{*}$	$2.6 \cdot 10^6 \text{ y}$	59 (0.02)				
		$^{60}\mathrm{Co} \xrightarrow{\beta^{-}} {}^{60}\mathrm{Ni}^{*}$	5.27 y	1173(1), 1332(1)				
r-process	Neutron star mergers	β decay, α decay	$\sim day$	$\sim 0.1 - 2 \text{ MeV}$				
nuclei		fission						

Highlights:

- ⁵⁶Ni decay chain detected from SN 1987A (core-collapse) and SN 2014J (thermonuclear)
- ⁴⁴Ti detected from 2 SNRs, Cas A and SN 1987A, no other source found in γ-ray surveys
- ²⁶Al and ⁶⁰Fe diffuse radioactivities (flux ratio of 15%) => hot ISM properties

SN 2014J: first SN Ia detected in γ rays

• Nearest type Ia (thermonuclear) SN in last 50 years, occurred in the starburst galaxy M82 at D = 3.5 Mpc

- INTEGRAL detection of the ⁵⁶Co ($T_{1/2}$ =77 d) γ -ray lines \Rightarrow synthesis of 0.6 ± 0.1 M_{\odot} of ⁵⁶Ni in the explosion (Churazov et al. 2014, 2015; see also Diehl et al. 2015)
- Unexpected detection of the ⁵⁶Ni ($T_{1/2}$ =6.1 d) γ -ray lines ~ 20 d after the explosion (Diehl et al. 2014; Isern et 2016) \Rightarrow Surface explosion? High-speed plume of ⁵⁶Ni (~0.05 M_{\odot})?
- Are SN Ia good standard candles for *precision* cosmology?

⁴⁴Ti supernova in core-collapse SNe

- ⁴⁴Ti produced close to the "mass cut", at r < 10³ km from α -rich freeze out \Rightarrow unique probe of the explosion mechanism
- ⁴⁴Ti decay detected from Cas A (*COMPTEL, INTEGRAL, NuSTAR*...) and SN 1987A (*INTEGRAL, NuSTAR*) \Rightarrow ⁴⁴Ti ejected mass: ~ (1.2 2) × 10⁻⁴ M_{\odot}
- *NuSTAR's* mapping of radioactivity in Cas A SNR: explosion asymmetries probably caused by low-mode convective instabilities (Grefenstette et al. 2014, 2017)
- Only Cas A detected in the Galaxy: abundant synthesis of ⁴⁴Ti in a rare class of SNe (see Tsygankov et al. 2016)

V. Tatischeff GT4 GDR RESANET & OG

Observatoire de Paris

²⁶Al (and ⁶⁰Fe): tracing the hot ISM

- Measured Doppler shifts of ²⁶Al 1.8 MeV line exceed expectations from Galactic rotation (e.g. CO data) => ²⁶Al ejected from massive stars and SNe into hot gas superbubbles expanding towards the leading edge of spiral arms (Kretschmer et al. 2013, Krause et al. 2015)
- ⁶⁰Fe-to-²⁶Al source abundance ratio of 15%

Neutron star mergers and kilonovae

- Kilonova: UV-Optical-NIR transient powered by the radioactive decay of r-process nuclei (Metzger et al. 2010)
- GW170817 (advanced LIGO and Virgo) associated with the short GRB 170817A (*Fermi* and *INTEGRAL*) and the optical/NIR transient SSS17a/AT2017gfo => kilonova
- Previous kilonovae suspected in GRBs 050709, 060614, 130603B
- Gamma-ray line emission detectable with the next-generation γ -ray observatories (e.g. e-ASTROGAM) to a distance <~12 Mpc (Li 2018) => \approx 0.05 0.5 NS merger per century

100 Energy [keV]

γ -ray line spectrum from energetic collisions⁸

+ the 511 keV line (not shown)

hν

Nuclear excitation cross sections

- Inelastic nuclear collisions: p, ³He, α + C, N, O, Ne, Al, Mg, Si, Ca & Fe
- Accelerator experiments at ALTO-IPNO (p < 25 MeV, α < 40 MeV), iThemba LABS (30 200 MeV protons) and HZ Berlin (50 90 MeV α) (+ Talys nuclear code): 82+ lines in p reactions, 73+ lines in α reactions (Kiener et al. 2012)
- Data evaluation/compilation: Murphy et al. (2009); Benhabiles-Mezhoud et al. (2013)

Gamma-ray lines from low-energy cosmic rays

MeV gamma-ray astronomy is the only direct way of studying the various effects of hadronic low-energy cosmic rays (E < 1 GeV nucleon⁻¹) in the ISM: ionization, heating – important for star formation –, astrochemistry, large-scale MHD turbulence, nucleosynthesis (LiBeB)

10

Low-energy cosmic rays in the ISM

- **Voyager 1** measurements of LECR spectra down to 3 MeV nucleon⁻¹
- ⇒ CR ionization rate: $\zeta_{\rm H} = (1.51 1.64) \times 10^{-17} \, {\rm s}^{-1}$, a factor >10 lower than the mean CR ionization rate measured in diffuse clouds, $\zeta_{\rm H} = 1.78 \times 10^{-16} \, {\rm s}^{-1}$ (Indriolo et al. 2015, Neufeld et al. 2017)
- H₃⁺ observations show that the density of LECRs strongly varies from one region to another in the Galaxy
- ⇒ Other sources of LECRs (<1 GeV/n) besides SNRs, e.g. OB associations (Parizot et al. 2004), microquasars (Heinz & Sunyaev 2002), anomalous CRs (Scherer et al. 2008) ?
- ⇒ γ-ray line flux from CR in the inner Galaxy detectable with foreseen observatories (Benhabiles-Mezhoud et al. 2013)

V. Tatischeff

GT4 GDR RESANET & OG

Observatoire de Paris

24-25 September 2018

511 keV line from positron annihilation

- First (& brightest) γ-ray line detected from outside the solar system (Johnson et al. 1972; Leventhal et al. 1978) => Galactic positron annihilation rate of ~ 5 × 10⁴³ s⁻¹
- Three distinct annihilation regions in the Galaxy: disc, bulge and center (nucleus) (Skinner et al. 2014, Siegert et al. 2016)
- What are the positron sources: β + decay (²⁶Al, ⁴⁴Ti, ⁵⁶Ni), p-p interaction by CRs, γ - γ in LMXRBs and/or microquasars, dark matter annihilation...?
- How do positrons propagate from their sources (B-field, ISM turbulence...) and annihilate (ISM morphology, cloud penetration...)

2.22 MeV line from X-ray binaries

 ^{2}H

- Neutron production by breakup of ⁴He and heavier nuclei accreted onto a compact object 2.22 MeV
- Recombination with H in the companion star (e.g. Guessoum & Jean 2002) or in neutron star atmosphere (e.g. Bildsten et al. 1993)
- Energy and width of the 2.2 MeV line
 ⇒ nuclear equation of state
- Searched for with SPI from the Be/Xray binary A0535+262 in outburst (May-June 2005; Çaliskan et al. 2009)
- However, COMPTEL 3.7σ detection of a 2.2 MeV point source (McConnell et al. 1997) is still not explained

γ-ray line astrophysics: science objectives¹⁴

- Understand the progenitor system(s) and explosion mechanism(s) of thermonuclear SNe (⁵⁶Ni, ⁵⁶Co)
- Study the dynamics of core collapse in massive star explosions (⁵⁶Co, ⁴⁴Ti) and the recent SN history in the Milky Way (⁴⁴Ti)
- Constrain the mixing between accreted matter and white dwarf core in nova explosions (⁷Be, ²²Na) and the nova contribution to Galactic ⁷Li (⁷Be)
- Study the dynamic interstellar medium and the cycle of matter (²⁶Al, ⁶⁰Fe)
- Understand the origin of the **positrons** annihilating in the Galactic bulge
- Probe the distribution of **low-energy cosmic rays** in different environment and study the role of these particle in the Galactic ecosystem
- Constrain the accretion physics and the nuclear equation of state from the 2.22 MeV line produced in X-ray binaries
- Study the acceleration of particles and the mixing processes in the solar outer convection zone from solar flare radioactivity

Gamma-ray astronomy in the MeV domain¹⁵

- Worst covered part of the EM spectrum (only a few tens of known steady sources so far between 0.5 and 30 MeV vs. 5500+ sources in the current Fermi/LAT catalog)
- Many objects have their peak emissivity in this range (GRBs, blazars, pulsars...)

Observatoire de Paris

Observational challenges for γ **-ray astronomy**

- Photon interaction probability reaches a minimum at ~ 10 MeV
- ⊗ Three competing processes of interaction, Compton scattering being dominant around 1 MeV ⇒ complicated event reconstruction

The MeV range is the domain of nuclear γ-ray lines (radioactivity, nuclear collision, positron annihilation, neutron capture)

Strong instrumental background from activation of spaceirradiated materials

Instrument concepts in γ-ray astronomy

Compton and pair-creation telescope

- Tracker Double sided Si strip detectors (DSSDs) for excellent spectral resolution and fine 3-D position resolution
- Calorimeter High-Z material for an efficient absorption of the scattered photon
 ⇒ CsI(TI) scintillation crystals readout by Si Drift Diodes for better energy resolution
- Anticoincidence detector to veto charged-particle induced background ⇒ plastic scintillators readout by Si photomultipliers

V. Tatischeff GT4 GDR RESANET & OG Observatoire de Paris

18

e-ASTROGAM & AMEGO

e-ASTROGAM Instrument

- Tracker: 56 layers of 4 times (4 towers) 5×5 DSSDs of 500 μm thickness and 240 μm pitch
- **Calorimeter**: 33 856 CsI(Tl) bars coupled at both ends to low-noise Silicon Drift Detectors
- Anti-coincidence detector: segmented plastic scintillators coupled to SiPM by optical fibers
- Orbit Equatorial (inclination i < 2.5°) low-Earth orbit (altitude in the range 550 600 km)
- **Observation modes** (i) zenith-pointing sky-scanning mode, (ii) nearly inertial pointing, (iii) fast repointing

✓ e-ASTROGAM designed for an ESA M-size mission

- AMEGO All-sky Medium Energy
 Gamma-ray Observatory (large coll. lead by NASA/GSFC)
- ✓ Designed for a NASA Probe mission

V. Tatischeff

GT4 GDR RESANET & OG

Observatoire de Paris

24-25 September 2018

e-ASTROGAM expected performance

Line sensitivity:

Line Schöttvity.								
E (keV)	FWHM (keV)	Origin	SPI sensitivity (ph cm ⁻² s ⁻¹)	e-ASTROGAM sensitivity (ph cm ⁻² s ⁻¹)	Improvement factor			
511	1.3	Narrow line component of the e+/e- annihilation radiation from the Galactic center region	5.2×10^{-5}	4.1×10^{-6}	13			
847	35	⁵⁶ Co line from thermonuclear SN	2.3×10^{-4}	3.5×10^{-6}	66			
1157	15	⁴⁴ Ti line from core-collapse SN remnants	9.6×10^{-5}	3.6×10^{-6}	27			
1275	20	²² Na line from classical novae of the ONe type	1.1×10^{-4}	3.8×10^{-6}	29			
2223	20	Neutron capture line from accreting neutron stars	1.1×10^{-4}	2.1×10^{-6}	52			
4438	100	¹² C line produced by low-energy Galactic cosmic-ray in the interstellar medium	1.1×10^{-4}	1.7×10^{-6}	65			

V. Tatischeff

24-25 September 2018

e-ASTROGAM Collaboration

- More than 400 collaborators from institutions in 29 countries
- Lead proposer: A. De Angelis (INFN, It.); Co-lead proposer: V.T. (CNRS, Fr.)
- **Instrument paper**: Exp. Astronomy 2017, 44, 25 <u>https://arxiv.org/abs/1611.02232</u>
- Science White Book (245 authors; 216 pages), see https://arxiv.org/abs/1711.01265

V. Tatischeff

GT4 GDR RESANET & OG

Observatoire de Paris