

Isotopic anomalies in extra-terrestrial matter

RESANET meeting 24-08-2018 Jean Duprat

CSNSM Orsay

The CI reference composition

Isotopic anomalies where & how ?

- **Different types** of isotopic anomalies
- Carried by different phases
- Different origins

Process in the disk

Process on the parent body

(^AXe/¹³⁰Xe)/(^AXe/¹³⁰Xe)_o

0

The first hints : noble gases (Xe) pattern reveals strong deviations

	70		72		74		76		78		80		82		N
∂Sn	120Sn	121Sn	122\$n	123Sn	124Sn	125\$n	126Sn	127\$n	1285n	129Sn	130Sn	131Sn	132Sn	1335n	134
оsр	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb	127Sb	128Sb	129Sb	130Sb	131Sb	132Sb	133Sb	134Sb	135
LTe	122Te	123Te	124Te	125Te	126Te	127Te	128Te	129Te	130Te	131Te	132Te	133Te	134Te	135Te	136
21	1661	1241	1857	1261	1271	1281	1291	1301	1311	1321	1557	134I	1557	1361	13
BXe	124Xe	125Xe	126Xe	127X¢	128Xe	129Xe	130Xe	131Xe	132Xe	133Xe	134Xe	135Xe	136Xe	137Xe	138
4Cs	125Cs	126Cs	127Cs	128Cs	129Cs	130Cs	131Cs	132Cs	133Cs	134Cs	135Cs	136Cs	137Cs	138Cs	139
2 (A)	134	136	3Ba	129Ba	130Ba	131Ba	132Ba	133Ba	134Ba	135Ba	136Ba	137Ba	138Ba	139Ba	140
	4		ƏLa	130La	131La	132La	133La	134La	135La	136La	137La	138La	139La	140La	141
Xe	e−S		- DCe	131Ce	132Ce	133Ce	134Ce	135Ce	136Ce	137Ce	138Ce	139Ce	140Ce	141Ce	142
				1.1 ·····		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	and the second se								

Presolar grains : Burning down the haystack to find direct heritages from stellar envelopes (SiC, Graphites, nano-diamants ... < 10 μm)

SiC

Larry Nittler, Carnegie Institution of Washington

In-situ secondary ion mass image (P. Hoppe et al)

The main components in Chondrites : matrix & refractory phases

Refractory phases the oldest solids of the solar system **Extinct radioactivities**

Presolar Grains organic matter

Ca-Al oxides and silicates

Identification of the parent type of star

AGB

path

SiC mainstream

- Low mass star produce C-rich dust
- C-rich from He shell burning
- Rich in ¹⁴N (from CNO cycle)

Ne-H in SiC

s-only nuclei vs. p-only (or r-only) nuclei

Solar composition (i.e. starting composition)

- Mixing between a solar end-member (i.e. the star's envelope) and a pure s-process end-member
- ⁹⁶Mo is produced in the star (AGB) but not ¹⁰⁰Mo nor ⁹²Mo
- The grains are enriched in ⁹⁶Mo (s-only) compared to solar
- Models taking into accounts various neutron fluxes (¹³C pocket) for two stellar masses (1.5 and $3 M_{\odot}$) can account for the data.
- The large symbols show when the condensation is possible (C/O>1)

Si isotopes in mainstream SiC

- ²⁸Si is a primary nucleus
- ^{29,30}Si are secondary nuclei

Galactic Chemical Evolution produce heavier Si,

i.e. enrichments in ^{29,30}Si

However, part of SiC mainstream Si isotopic abundances appears younger than the Sun...

Pre-solar grains & massive stars

Leitner + 2010 (NIC)

Nittler 2018 (from Davison GCA 2014)

Presolar grains abundances

- AGB stars > 90% of SiC, Silicates, Oxides
- **Type II SN**, <10% of SiC, Silicates Oxides,
 - < 50% graphite, 100% of Si3N4
- **Novae** <1% SiC, Silicates, Oxides graphite ?

SiC in Chondrites about 30 ppm

High precision isotopic data reveals that planets and asteroids have slightly different bulk isotopic compositions

 ε^{50} Ti is deviation of 10⁻⁴ from the Earth ⁵⁰Ti/⁴⁷Ti (i.e 0,01 %)

Scott et al ApJ 2018

Non-thermal nucleosynthesis

There is clear evidence for the presence of short -lived (10⁵-10⁶ yrs) nuclei in the protoplanetary disk

Radioactive	Reference	Process	Mean life	$(N^R/N^I)_{ESS}$	$(N^{\mathbb{R}}/N^{\mathbb{I}})_{UP}$	
isotope (R)	isotope (I)		$\bar{\tau}_R$ (Myr)		$\Delta_1 = 0$ Myr	
238U	²³² Th	r;r	6.45×10^3 ; 2.03×10^4	0.438	0.388	
235 U	238U	r; r	1.02×10^3 ; 6.45×10^3	0.312	0.289	
244Pu	²³² Th	r; r	$115; 2.03 \times 10^4$	3×10^{-3}	5.6×10^{-3}	
	238U	r; r	115; 6.45×10^3	6×10^{-3}	1.4×10^{-2}	
²⁴⁷ Cm	235 U	r; r	$22.5; 1.02 \times 10^3$	$(< 2 \times 10^{-3}; < 10^{-4})$	8.9×10^{-3}	
182Hf	¹⁸⁰ Hf	r; r, s	13; stable	2.0×10^{-4}	4.5×10^{-4}	
146Sm	144Sm	p; p	148; stable	1.0×10^{-2}	1.5×10^{-2}	
⁹² Nb	93 Nb	p;s	52; stable	?	1.0×10^{-4}	
135Cs	133Cs	r, s; r, s	2.9; stable	1.6×10^{-4} ?	2.1×10^{-4}	
²⁰⁵ Pb	²⁰⁴ Pb	\$;5	22; stable	?	-	
129 _I	127 I	r; r, s	23; stable	1.0×10^{-4}	$(2-5) \times 10^{-3}$	
107Pd	108 Pd	5, 1; 1, 5	9.4; stable	2.0×10^{-5}	6.2×10^{-4}	
60 _{Ea}	56 _{Ea}	eq. exp. r	2.2: stable	$(2 \times 10^{-7}; 2 \times 10^{-6})$	5×10^{-7}	
⁵³ Mn	⁵⁵ Mn	p, exp; exp	5.3; stable	$(\sim 6 \times 10^{-5}; 5 \times 10^{-6})$	$\sim 1 \times 10^{-4}$	
⁴¹ Ca	⁴⁰ Ca	s, exp; exp	0.15; stable	1.5×10^{-8}	2×10^{-8}	
³⁶ Cl	35CI	s; exp	0.43; stable	5×10^{-6}	3.8×10^{-7}	
²⁶ Al	27 _{AI}	p; exp	1.03; stable	5×10^{-5}	$\sim 10^{-7}$	
10 Be	⁹ Bc	spallation	2.3: stable	1×10^{-3}	0	

Wasserburg et al Nucl. Phys; A 2006

140

BRADLEY S. MEYER AND DONALD D. CLAYTON

- Last minute stellar nucleosynthesis
- What was the context of the solar system birth? Correlation with other anomalies (the carrier phases?)

HH30, HST, (©Burrows, STSci/ESA, WFPC2, NASA

Asteroids and comets, a major goal for space missions

ROSETTA Mission

K. Altwegg et al. Science 2015

A new type of interplanetary material

UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) In UCAMMs, the organic matter represent more than 50 vol%

It is possible to recover cometary particles at Earth surface

C_2D^-/C_2H^- and $C^{15}N^-/C^{14}N^-$ spatial correlations on the UCAMM DC94 fragment

ImageJ

Bardin et al Metsoc 2015

UCAMM organics are N-rich

Fe

 \checkmark

N2-CH4 ices at the surface of icy bodies

N2, NH3, CH4 icy mantle

irradiation and in-situ IR analysis of ices of astrophysical interest

The CASIMIR set-up

Ni¹¹⁺ @44 MeV; 160 MeV Ar¹⁵⁺@160 MeV

<image>

The new IGLIAS set-up

Target N2-CH4 ices (90:10; 98:2) B. Augé *et al.* A&A 2016

High energy ions irradiation of N-rich ices

2018 : irradiation of N_2 -CH₄-CD₄ produce a residue with large isotopic heterogeneities B. Augé *et al. in prep*

2016 : Galactic Cosmic Ray interaction with N_2 -CH₄ ices induce a refractory poly-HCN residue that can be the precursor of the ultra-carbonaceous micrometeorites organics.

The origins of D-rich organics

Conclusions

- At the first order, the material that formed the solar system was well mixed → the meteorite CI reference
- Most PSG have condensed in envelopes of low mass stars (i.e. AGBs)
- **Few PSG** (Type X SiC, graphites,...) originate from **massive stars**
- Planets, asteroids and (possibly) comets samples exhibits tiny bulk isotopic
 differences (slightly different initial reservoirs ? secondary processes ?)
- Last minute nucleosynthesis (including non-thermal events) contaminated the protoplanetary disk in short-lived radionuclides (²⁶Al, ¹⁰Be, ⁴¹Ca, ³⁶Cl,...)
- Large isotopic anomalies (D/H, ¹⁵N/¹⁴N, ...) are observed in interplanetary
 organic matter. This organics may formed in the parent molecular cloud, and/or
 secondary processes within the protoplanetary disk, or at the surface of icy parent bodies