Current status and desired accuracy of the isotopic production cross sections relevant to astrophysics of cosmic rays: 1. Li, Be, B, C, N

Génolini, Maurin, Moskalenko & Unger https://arxiv.org/abs/1803.04686 Phys. Rev. C 98, 034611 (as an *Editors' Suggestion*)

- 1. GCR: brief introduction
- 2. XS uncertainties \gg GCR data uncertainties
- 3. Which reactions matter? Ranking for GCRs
- 4. Conclusions

GCR = Galactic cosmic rays XS = cross sections

David Maurin dmaurin@lpsc.in2p3.fr

GdR RESANET, Observatoire de Paris 24 September 2018

Cosmic ray spectrum and sources

GCR data: abundances

Elemental spectra

Bauch et al., AdSR 53 (2014)

1. Introduction

GCR data: rare production

Elemental spectra

→ How well do we know the astro. production? → Is it a good place to look for dark matter?

1. Introduction

GCR journey

Nuclear reactions

(ISM ~ 90%H + 10% He)

- Inelastic XS (e.g., ${}^{12}C+H \rightarrow X$)
- Production XS (e.g., ${}^{12}C+H \rightarrow {}^{11}B+X$)

GCR journey

AMS experiment

Installed on IS<mark>S</mark> in May 2011

- \rightarrow Circular orbit, 400 km, 51.6°
- \rightarrow Continuous operation 24/7
- \rightarrow Average rate ~700 Hz (60/millions particles/day)

More than 100 billion events so far

A game-changing experiment → high precision data → anomalies detected in spectra

1. Intri

action

AMS results: ~3% uncertainties!

AMS-02 proton flux Aguilar et al., PRL 114 (2015) → based on 300 million events

... and uncertainties

→ most difficult part of the analysis
→ stat. uncertainties sub-dominant

AMS results: spectral break in all nuclei!

1. Introduction

Other experiments taking data

→ A bright present (and near future) for high-energy cosmic-rays

DAMPE satellite Launched in 2015

... but data interpretation limited by XS uncertainties!

1. GCR: brief introduction

2. XS uncertainties \gg GCR data uncertainties

3. Which reactions matter? Ranking for GCRs

4. Conclusions

"Nuclear physics for GCRs in the AMS-02 era" LPSC (2012) https://indico.in2p3.fr/event/7012/

"XSCRC2017: Cross sections for Cosmic Rays" CERN (2017) https://indico.cern.ch/event/563277/

XS data: inelastic and production

CR modelling requires

- Reaction cross-section (CR destruction)
- Production cross sections (secondary species)

on ISM (~ 90% H, 10% He)

Various approaches

- \rightarrow Microscopic
- \rightarrow Semi-empirical
- → Parametric

XS data: illustration with B and C

Tomassetti, PRD 93, 3005 (2017)

2. XS and GCRs

XS data: impact on GCRs

Tomassetti, PRD 93, 3005 (2017)

XS data: impact on GCRs

Fixed propagation setup

New XS data required! → Which reactions are the most important, how many matter? → How to have a proper error budget (from XS to fluxes)

2. XS and GCRs

1. GCR: brief introduction

2. XS uncertainties \gg GCR data uncertainties

3. Which reactions matter? Ranking for GCRs

4. Conclusions

Génolini, Maurin, Moskalenko & Unger https://arxiv.org/abs/1803.04686 To appear in PRC (as an *Editors' Suggestion*)

Reactions involved: 1-step reactions

Illustration with GCR Boron

Reactions involved: 2-step reactions

Illustration with GCR Boron

Reactions involved: short-lived nuclei

Reactions to consider

a (CRs) + b (H, He) \rightarrow c (CRs + ghost nuclei)

Ghost nuclei to account for

• Exemple

$$\sigma_{\mathrm{X}\to^{10}\mathrm{B}}^{\mathrm{c}} = \sigma_{\mathrm{X}\to^{10}\mathrm{B}} + \sigma_{\mathrm{X}\to^{10}\mathrm{C}} \times \mathcal{B}r(^{10}\mathrm{C}\to^{10}\mathrm{B})$$

- -----

• Relevant list for Li, Be, B fluxes

Nucleus	$T_{1/2}$	Daughter (decay mode)
$^{6}\mathrm{He}$	$806.92~\mathrm{ms}$	⁶ Li (β^- , 100%)
⁹ Li	$178.3 \mathrm{\ ms}$	⁹ Be (β^- , 49.2%, ⁴ He ($\beta^- n$, 50.8%)
10 C	$19.3009~{\rm s}$	${}^{10}B~(\beta^+,~100\%)$
$^{11}\mathrm{C}$	$20.364~\mathrm{m}$	¹¹ B (β^+ , 100%)
^{12}B	$20.20~\mathrm{ms}$	$^{12}{\rm C}~(\beta^-,98.4\%),^4{\rm He}~(\beta^-3\alpha,1.6\%)$
13 N	$9.965~\mathrm{m}$	${}^{13}C \ (\beta^+, \ 100\%)$
^{13}O	$8.58 \ \mathrm{ms}$	${}^{13}C \ (\beta^+, 89.1\%), {}^{12}C \ (\beta^+p, 10.9\%)$
^{14}O	$70.620~{\rm s}$	14 N (β^+ , 100%)
¹⁵ O	$122.24~\mathrm{s}$	15 N (β^+ , 100%)

Flux impact: f_{abc} coefficients

Reactions to consider

a (CRs) + b (H, He) \rightarrow c (CRs + ghost nuclei)

Ghost nuclei to account for

• Exemple

$$\sigma_{\mathrm{X}\to^{10}\mathrm{B}}^{\mathrm{c}} = \sigma_{\mathrm{X}\to^{10}\mathrm{B}} + \sigma_{\mathrm{X}\to^{10}\mathrm{C}} \times \mathcal{B}r(^{10}\mathrm{C}\to^{10}\mathrm{B})$$

- -----

• Relevant list for Li, Be, B fluxes

Nucleus	$T_{1/2}$	Daughter (decay mode)
$^{6}\mathrm{He}$	$806.92~\mathrm{ms}$	⁶ Li (β^- , 100%)
9 Li	$178.3 \mathrm{\ ms}$	⁹ Be (β^- , 49.2%, ⁴ He ($\beta^- n$, 50.8%)
10 C	$19.3009~{\rm s}$	${}^{10}B~(\beta^+,~100\%)$
$^{11}\mathrm{C}$	$20.364~\mathrm{m}$	¹¹ B (β^+ , 100%)
^{12}B	$20.20\ \mathrm{ms}$	$^{12}\mathrm{C}~(\beta^-,98.4\%),^4\mathrm{He}~(\beta^-3\alpha,1.6\%)$
13 N	$9.965~\mathrm{m}$	${}^{13}C \ (\beta^+, \ 100\%)$
^{13}O	8.58 ms	${}^{13}C \ (\beta^+, 89.1\%), {}^{12}C \ (\beta^+p, 10.9\%)$
^{14}O	$70.620~{\rm s}$	¹⁴ N (β^+ , 100%)
^{15}O	$122.24~\mathrm{s}$	$^{15}N \ (\beta^+, \ 100\%)$

Calculate f_{abc}

$$f_{abc} = \frac{\psi^{\text{sec}}(\text{ref}) - \psi^{\text{sec}}(\sigma^{a+b\to c} = 0)}{\psi^{\text{sec}}(\text{ref})}$$

Flux impact: ranking XS

Reactions to consider

a (CRs) + b (H, He) \rightarrow c (CRs + ghost nuclei)

Ghost nuclei to account for

• Exemple

$$\sigma_{\mathrm{X}\to^{10}\mathrm{B}}^{\mathrm{c}} = \sigma_{\mathrm{X}\to^{10}\mathrm{B}} + \sigma_{\mathrm{X}\to^{10}\mathrm{C}} \times \mathcal{B}r(^{10}\mathrm{C}\to^{10}\mathrm{B})$$

- ----

• Relevant list for Li, Be, B fluxes

Nucleus	$T_{1/2}$	Daughter (decay mode)
$^{6}\mathrm{He}$	$806.92~\mathrm{ms}$	⁶ Li (β^- , 100%)
⁹ Li	$178.3 \mathrm{\ ms}$	⁹ Be (β^- , 49.2%, ⁴ He ($\beta^- n$, 50.8%)
10 C	$19.3009~{\rm s}$	${}^{10}B~(\beta^+, 100\%)$
$^{11}\mathrm{C}$	$20.364~\mathrm{m}$	¹¹ B (β^+ , 100%)
^{12}B	$20.20 \ \mathrm{ms}$	$^{12}{\rm C}~(\beta^-,98.4\%),{}^{4}{\rm He}~(\beta^-3\alpha,1.6\%)$
13 N	$9.965~\mathrm{m}$	${}^{13}C \ (\beta^+, \ 100\%)$
¹³ O	8.58 ms	${}^{13}C \ (\beta^+, 89.1\%), {}^{12}C \ (\beta^+p, 10.9\%)$
^{14}O	$70.620~{\rm s}$	14 N (β^+ , 100%)
^{15}O	$122.24~\mathrm{s}$	15 N (β^+ , 100%)

Calculate f_{abs}... et voilà!

$$f_{abc} = \frac{\psi^{\text{sec}}(\text{ref}) - \psi^{\text{sec}}(\sigma^{a+b\to c} = 0)}{\psi^{\text{sec}}(\text{ref})}$$

Reaction $a+b \rightarrow c$	Flux impact f_{abc}		f_{abc} [%]	%] σ [mb]	
	\min	mean	max	range	
$\sigma(^{12}C + H \rightarrow ^{11}B)$	18.0	18.1	19.0	30.0	
$\sigma(^{12}C + H \rightarrow ^{11}C)$	16.0	16.2	17.0	26.9	
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$	11.3	11.8	12.0	18.2	
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	
$\sigma(^{16}O + H \rightarrow ^{10}B)$	6.82	7.03	7.21	10.9	
$\sigma(^{16}O + H \rightarrow ^{11}C)$	5.67	5.89	6.00	9.1	
$\sigma(^{11}_{10}B + H \rightarrow ^{10}_{10}B)$	4.00	4.07	4.20	38.9	
$\sigma(^{12}_{12}C + He \rightarrow ^{11}_{12}B)$	2.50	2.59	2.70	38.6	
$\sigma(^{12}C + He \rightarrow ^{11}C)$	2.10	2.14	2.20	32.0	
$\sigma(^{15}N + H \rightarrow ^{11}B)$	2.00	2.03	2.10	26.1	
$\sigma(^{12}C + H \rightarrow ^{10}C)$	1.80	1.87	1.90	3.1	
$\sigma(^{16}O + He \rightarrow ^{11}B)$	1.67	1.75	1.80	24.4	
$\sigma(^{13}_{12}C + H \rightarrow ^{11}_{10}B)$	1.50	1.53	1.60	22.2	
$\sigma(^{12}_{14}C + H \rightarrow ^{10}_{11}Be)$	1.40	1.48	1.50	4.0	
$\sigma(^{14}N + H \rightarrow ^{11}B)$	1.30	1.34	1.36	17.3	
$\sigma(^{12}C + He \rightarrow ^{10}B)$	1.00	1.06	1.10	15.8	
$\sigma(^{10}\text{O} + \text{He} \rightarrow ^{10}\text{B})$	0.99	1.05	1.09	14.6	
$\sigma(^{24}Mg + H \rightarrow^{11}B)$	0.98	1.01	1.00	10.4	
$\sigma({}^{14}N + H \rightarrow {}^{11}C)$	0.90	0.92	0.94	11.9	
$\sigma(16 \text{ Ne} + \text{H} \rightarrow 11 \text{B})$	0.87	0.90	0.93	12.0	
$\sigma(_{16}^{16}O + He \rightarrow _{10}^{17}C)$	0.83	0.88	0.90	12.2	
$\sigma(^{10}\text{O} + \text{H} \rightarrow ^{10}\text{Be})$	0.84	0.87	0.91	2.2	
$\sigma(^{14}\text{B} + \text{H} \rightarrow ^{10}\text{Be})$	0.81	0.83	0.85	12.9	
$\sigma(^{12}N + H \rightarrow ^{10}B)$	0.77	0.79	0.82	10.3	
$\sigma(^{28}N + H \rightarrow ^{28}B)$	0.72	0.74	0.77	9.0	
$\sigma(^{-5}SI + H \rightarrow ^{-10}B)$	0.39	0.63	0.87	[4.0, 9.5]	
$\sigma(-C + H \rightarrow -B)$	0.59	0.62	0.65	9.0	
$\sigma(Mg + H \rightarrow B)$	0.58	0.60	0.62	6.2	
$\sigma(\mathbf{D} + \mathbf{ne} \rightarrow \mathbf{D})$	0.57	0.58	0.59	50.0	
$\sigma^{(20}N_0 + H \rightarrow 11C)$	0.54	0.50	0.59	0.2 7.2	
$a^{(24}Ma + H \rightarrow 11C)$	0.52	0.54	0.56	[51 50]	
$\sigma^{(20}N_0 + H_{-10}^{10}P)$	0.31	0.55	0.50	6 4 7 1	
σ ($128 \text{ s}; \pm \text{ H} \rightarrow 11 \text{ C}$)	0.49	0.51	0.52	4 2 5 0	
$\sigma^{15}N + H \rightarrow 11C$	0.42	0.44	0.40	[4.3, 3.0]	
$\sigma^{(28S)} \pm H \rightarrow ^{10}B$	0.40	0.41	0.43	[28 57]	
$\sigma({}^{56}\text{Fe} \pm \text{H} \rightarrow {}^{11}\text{B})$	0.03	0.35	0.67	[2.8, 0.7]	
$\sigma^{(15}N + He \rightarrow^{11}B)$	0.00	0.29	0.30	34.1	
$\sigma^{(22)}Ne + H \rightarrow 11B$	0.27	0.28	0.30	[16.0. 18.0]	
$\sigma^{(13}C + H \rightarrow {}^{10}Be)$	0.24	0.25	0.26	5.9	
$\sigma^{(12}C + He \rightarrow {}^{10}C)$	0.24	0.25	0.25	3.7	
σ ⁽⁵⁶ Fe + H \rightarrow ¹⁰ B)	0.01	0.24	0.47	[0.2, 7.8]	
$\sigma^{(12}C + He \rightarrow {}^{10}Be)$	0.22	0.23	0.24	5.6	
5(5 m + m)	0.22	0.10		0.0	

N.B.: ranking robust against transport/source parameters

Flux impact: ranking XS

Reaction $a+b \rightarrow c$	Flux	impact	f_{abc}	$[\%] \sigma [mb]$	Data	$\sigma \H \sigma$
	\min	mean	\max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma(^{12}C + H \rightarrow ^{11}C)$	16.0	16.2	17.0	26.9	1	n/a
$\sigma(^{16}\text{O} + \text{H} \rightarrow ^{11}\text{B})$	11.3	11.8	12.0	18.2	~	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	~	1.1
$\sigma(^{16}O + H \rightarrow ^{10}B)$	6.82	7.03	7.21	10.9	~	
$\sigma(^{16}O + H \rightarrow ^{11}C)$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}_{12}B + H \rightarrow ^{10}_{12}B)$	4.00	4.07	4.20	38.9	~	
$\sigma(^{12}_{12}C + He \rightarrow ^{11}_{12}B)$	2.50	2.59	2.70	38.6		1.8
$\sigma(^{12}C + He \rightarrow ^{11}C)$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{15}N + H \rightarrow ^{11}B)$	2.00	2.03	2.10	26.1	~	1.2
$\sigma({}^{12}C + H \rightarrow {}^{10}C)$	1.80	1.87	1.90	3.1	~	n/a
$\sigma(^{10}_{13}\text{O} + \text{He} \rightarrow ^{11}_{13}\text{B})$	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}_{12}C + H \rightarrow ^{11}_{10}B)$	1.50	1.53	1.60	22.2		1.7
$\sigma(^{12}_{14}C + H \rightarrow ^{10}_{11}Be)$	1.40	1.48	1.50	4.0	~	
$\sigma(^{14}N + H \rightarrow ^{11}B)$	1.30	1.34	1.36	17.3	~	1.7
$\sigma(^{12}C + He \rightarrow ^{10}B)$	1.00	1.06	1.10	15.8		1.1
$\sigma(^{10}\text{O} + \text{He} \rightarrow ^{10}\text{B})$	0.99	1.05	1.09	14.6		
$\sigma(^{24}Mg + H \rightarrow^{11}B)$	0.98	1.01	1.00	10.4		1.6
$\sigma({}^{14}N + H \rightarrow {}^{11}C)$	0.90	0.92	0.94	11.9		n/a
$\sigma(^{20}\text{Ne} + \text{H} \rightarrow ^{11}\text{B})$	0.87	0.90	0.93	12.0		1.7
$\sigma(_{16}^{16}O + He \rightarrow _{10}^{17}C)$	0.83	0.88	0.90	12.2		n/a
$\sigma(^{10}\text{O} + \text{H} \rightarrow ^{10}\text{Be})$	0.84	0.87	0.91	2.2	1	
$\sigma(^{11}B + H \rightarrow ^{10}Be)$	0.81	0.83	0.85	12.9	<i>.</i>	
$\sigma(1-N + H \rightarrow 10B)$	0.77	0.79	0.82	10.3	<i>.</i>	
$\sigma(^{10}\text{N} + \text{H} \rightarrow ^{10}\text{B})$	0.72	0.74	0.77	9.6	~	0.1
$\sigma(\overset{\circ}{}_{13}S_1 + H \rightarrow \overset{\circ}{}_{10}B)$	0.39	0.63	0.87	[4.0, 9.5]		2.1
$\sigma({}^{10}\text{C} + \text{H} \rightarrow {}^{10}\text{B})$	0.59	0.62	0.65	9.0		1.6
$\sigma(\stackrel{\text{rm}}{\text{mg}} + H \rightarrow \stackrel{\text{rm}}{\text{mg}} B)$	0.58	0.60	0.62	6.2		
$\sigma(^{-B} + He \rightarrow ^{-B}B)$	0.57	0.58	0.59	50.0		,
$\sigma(^{10}C + H \rightarrow ^{11}C)$	0.54	0.56	0.59	8.2	,	n/a
$\sigma(2^{\circ}\text{Ne} + H \rightarrow 2^{\circ}C)$	0.52	0.54	0.56	7.2	~	n/a
$\sigma(-Mg + H \rightarrow C)$	0.51	0.53	0.56	[5.1, 5.9]		n/a
$\sigma({}^{\circ}\text{Ne} + \text{H} \rightarrow {}^{\circ}\text{B})$	0.49	0.51	0.52	[6.4, 7.1]		,
$\sigma(\stackrel{\sim}{} S_{1} + H \rightarrow \stackrel{\sim}{} C)$	0.42	0.44	0.46	[4.3, 5.0]	,	n/a
$\sigma({}^{\circ\circ}\mathbf{N} + \mathbf{H} \rightarrow {}^{\circ\circ}\mathbf{C})$	0.40	0.41	0.43	5.3	~	n/a
$\sigma(56D + H \rightarrow B)$	0.27	0.39	0.52	[2.8, 5.7]		
$\sigma(5Fe + H \rightarrow 5B)$	0.03	0.35	0.67	[0.4, 11.0]		3.3
$\sigma(^{22}N + He \rightarrow B)$	0.29	0.29	0.30	54.1		1.2
$\sigma(-\text{Ne} + \text{H} \rightarrow -\text{B})$	0.27	0.28	0.30	[10.0, 18.0]	×,	1.2
$\sigma(12C + H \rightarrow Be)$	0.24	0.25	0.26	5.9	~	/
$\sigma(-\mathbf{C} + \mathbf{He} \rightarrow -\mathbf{C})$	0.24	0.25	0.25	3.7		n/a
$\sigma(Fe + H \rightarrow B)$	0.01	0.24	0.47	[0.2, 7.8]		1.1
$\sigma(^{-2}C + He \rightarrow ^{-0}Be)$	0.22	0.23	0.24	5.6		

This is what it looks like...

N.B.: ranking robust against transport/source parameters

Flux impact: repeated for Li to N

XS improvement \rightarrow flux prediction improvement

Correlated uncertainties?

- \rightarrow measurements from same experimental setup
- \rightarrow parametrizations induce systematics

Uncorrelated uncertainties?

 \rightarrow data from different experimental setups

Looking at the data/parameterizations

- correlated for all fragments of a given projectile
- Uncorrelated between different projectile

XS improvement \rightarrow flux prediction improvement

Correlated uncertainties?

- \rightarrow measurements from same experimental setup
- \rightarrow parametrizations induce systematics

Uncorrelated uncertainties?

 \rightarrow data from different experimental setups

Looking at the data/parameterizations

- correlated for all fragments of a given projectile
- Uncorrelated between different projectile

(projectile + target) to measure with high priority

- → Ordering insensitive on error assumption
- → Calculated for Li, Be, B, N, and C

1. GCR: brief introduction

2. XS uncertainties \gg GCR data uncertainties

3. Which reactions matter? Ranking for GCRs

4. Conclusions

XS improvement \rightarrow flux prediction improvement

Wealth of high precision GCR data

but

interpretation limited by insufficient quality of XS data/models

- → **Need support** for nuclear physics and high energy physics communities
 - ~few % accuracy required on key channels (100 MeV/n to multi-GeV/n)
 - improve models if possible...

In **Génolini et al.** (1803.04686), we provide:

- Motivation for XS community to propose new experiments
- Key reactions for which we need better data (for Li to N GCR fluxes)
- C_{ab} coeff. to calculate # of interactions required (to plan an experiment)
- XS data and models (in hundreds of plots) and references
- \rightarrow the **GCR community**, as a whole, would be extremely grateful for your help!
 - NA61/SHINE proposal SPSC-P-330 at 10 GeV/n (M. Unger)
 - Other candidates?

Public ressources for GCRs

USINE propagation code https://arxiv.org/abs/1807.02968 https://lpsc.in2p3.fr/usine Cosmic-ray data base (CRDB) A&A 569, A32 (2014) https://lpsc.in2p3.fr/crdb

Theoretical milestones


```
I. Introduction
```

A(lpha) M(agnetic) S(pectrometer)

A(lpha) M(agnetic) S(pectrometer)

Sub-detector redundancy

Each analysis specific (flux/ratio, leptons/nuclei)

- ID and E (or R) measurement
- Background from other particles
- Background from interaction in detector

+ rely on

- Beam test
- In-flight dataMonte Carlo sims

IV. AMS

Dark matter detection with AMS-02?

Positron fraction, e⁻, e⁺ and e⁻+e⁺ spectra used to test astrophysical and/or dark matter hypothesis

- Contribution from local SNRs/pulsars? \rightarrow e.g., Delahaye et al., A&A 524, A51 (2010)
- Dark matter hypothesis? \rightarrow e.g., Boudaud et al., A&A 575, 67 (2015) [N.B.: no boost, Lavalle et al., A&A 479, 427 (2008)]

N.B.: see also e- and e+ in Aguilar et al., PRL 113, 121102 (2014)

Antiprotons

 \rightarrow Seems consistent with astrophysics only

'Origin' of Li to N fluxes

Contributions (relative and absolute) at 10 GeV/n

CR	,	% of total flux		% of multi-step secondaries			
	% isotope	prim.	frag.	rad.	1	2	> 2
Li		0	100	0	66	25	9
	$(56\%)^{-6}$ Li	0	100	0	66	25	9
	$(44\%)^{-7}$ Li	0	100	0	66	26	8
\mathbf{Be}	_	0	100	0	73	20	7
	(63%) ⁷ Be	0	100	0	78	17	6
	$(30\%)^{-9}$ Be	0	100	0	65	26	9
	$(6\%)^{-10}$ Be	0	100	0	66	26	7
В		0	95	5	79	17	5
	$(33\%)^{-10}B$	0	85	15	(70)	24	6
	$(67\%)^{-11}B$	0	100	0	82	14	4
\mathbf{C}		79	21	0	77	17	5
	$(90\%)^{-12}C$	88	12	0	72	21	6
	$(10\%)^{-13}C$	7	93	0	83	13	4
	$(0.02\%)^{-14}$ C	0	100	0	56	35	9
Ν		27	72	2	87	9	4
	$(54\%)^{-14}$ N	49	48	3	83	13	4
	$(46\%)^{-15}$ N	0	100	0	89	7	3

- \rightarrow Which reactions are the most important, how many matter?
- \rightarrow How to have a proper error budget (from XS to fluxes)

Ranking of channels (sum over all targets + ghosts)

→ Many channels contribute!

→ Known result: dominant channels ~ most abundant CRs [secondaries ∞ Source abund * σ]

 Element
 C
 N
 O
 Ne
 Na
 Mg
 Al
 Si
 S
 Ca
 Fe

 Abund.
 986
 219
 1000
 152
 26
 197
 31
 163
 30
 18
 110

HEAO-3 abundances at ~10 GeV/n

1-step and 2-step only (>2 steps~5%)						
# of channels	in range	cont	ributio	n [%]		
13	[1%, 100%]		82.2			
25	[0.1%, 1%]		7.7			
110	[0.01%.0.1%]		3.8			
346	[0.001%.0.01%]		1.3			
526	[0.0001% 0.001%]		0.2			
2340	[0.0%,0.0001%]		0.0			
Channel		min	mean	max		
$^{12}C \rightarrow ^{11}B$		30.8	32.7	35.3		
$^{16}O \rightarrow ^{11}B$		16.2	17.7	18.8		
${}^{12}C \rightarrow {}^{10}B$		9.04	9.95	10.9		
$^{16}O \rightarrow ^{10}B$		7.64	8.17	8.68		
$^{12}C \rightarrow ^{11}B$	$\rightarrow {}^{10}B$	2.07	2.16	2.26		
$^{16}O \rightarrow ^{12}C$	$\rightarrow {}^{11}B$	1.60	1.96	2.34		
$10 \text{O} \rightarrow 10^{10} \text{N}$	\rightarrow ¹¹ B	1.29	1.69	2.04		
$^{24}Mg \rightarrow ^{11}B$		1.51	1.59	1.69		
$^{20}Ne \rightarrow ^{11}B$		1.26	1.32	1.39		
$^{14}N \rightarrow ^{11}B$		1.00	1.32	1.66		
$20^{\circ}Si \rightarrow 11^{\circ}B$	10-	0.85	1.29	1.66		
$160 \rightarrow 130$	$\rightarrow 10^{\circ}B$	1.03	1.17	1.26		
$16 \circ 14 \times 14 \times 14 \times 16 \circ 16 \circ 14 \times 14 \times 16 \circ 16$	$\rightarrow 11$ B	0.54	1.15	1.62		
$24 \text{ N} \rightarrow 10 \text{ D}$	$\rightarrow \ldots B$	0.68	0.83	0.92		
$Mg \rightarrow B$ 160 120	. 10 p	0.00	0.75	0.84		
$16 O \rightarrow C$ 15 N	$\rightarrow B_{10}$	0.51	0.59	0.09		
$20 \text{ No} \rightarrow 10 \text{ R}$	\rightarrow D	0.30	0.59	0.00		
$28_{Si} \rightarrow 10_{B}$		0.32	0.53	0.67		
$^{14}N \rightarrow ^{10}B$		0.39	0.50	0.65		
${}^{56}\text{Fe} \rightarrow {}^{11}\text{B}$		0.11	0.49	1.10		
$^{16}O \rightarrow ^{13}C$	\rightarrow ¹⁰ B	0.12	0.32	0.50		
$^{16}O \rightarrow ^{14}N$	\rightarrow ¹⁰ B	0.26	0.31	0.36		
$^{24}Mg \rightarrow ^{12}C$	\rightarrow ¹¹ B	0.21	0.22	0.25		
${}^{56}\overline{\text{Fe}} \rightarrow {}^{10}\overline{\text{B}}$		0.00	0.21	0.71		
$^{20}Ne \rightarrow {}^{12}C$	\rightarrow ¹¹ B	0.19	0.20	0.22		
$^{14}N \rightarrow ^{12}C$	\rightarrow ¹¹ B	0.14	0.20	0.25		
$^{13}C \rightarrow ^{11}B$		0.15	0.18	0.24		
$^{28}Si \rightarrow ^{12}C$	\rightarrow ¹¹ B	0.10	0.18	0.21		
$^{20}M_{\odot}$, ^{11}D		0.14	0.17	0.10		

Few reactions to measure to get Li, Be, and B

FIG. 2. Contributive and cumulative fractions of reactions for the overall production of secondary LiBeB in GCRs at 10 GeV/nucleon. The labels on the abscissa give the projectile+target combination considered.

Planning an experiment: Cab and # of interactions

N = number of interactions (poissonian distribution) V = covariance of the measured number of fragments

$$p_{c} = \frac{\sigma^{abc}}{\sigma_{ab}}, \qquad n_{i} = p_{i} N,$$

$$V_{ij}^{n} \equiv V(n_{c_{i}}, n_{c_{j}}) = \begin{cases} N p_{i}(1 - p_{i}), & i = j \\ -N p_{i} p_{j}, & i \neq j. \end{cases}$$

$$\mathcal{C}_{ab} \equiv \left[\left(\sum_{i=1}^{m} f_{abc_{i}} \right)^{2} + \sum_{i=1}^{m} f_{abc_{i}}^{2} \left(\frac{\sigma^{ab}}{\sigma^{abc_{i}}} - 1 \right) \right.$$

$$-2 \sum_{i=1}^{m} \sum_{j=i+1}^{m} f_{abc_{i}} f_{abc_{j}} \right]^{\frac{1}{2}},$$

$$\left(\frac{\Delta\psi^{\rm sec}}{\psi^{\rm sec}}\right)_{ab} = \frac{1}{\sqrt{N}} \,\mathcal{C}_{ab}.$$

в					
$\left(\sum C_{ab} = 3.96\right)$					
Reaction $(a + b)$	C_{ab}				
${}^{12}C + H$	0.808				
$^{16}O + H$	0.656				
${}^{16}O + He$	0.609				
$^{14}N + H$	0.574				
$^{14}\mathrm{N}+\mathrm{He}$	0.202				
$^{12}C + He$	0.148				
${}^{11}B + H$	0.108				
$^{24}Mg + H$	0.094				
$^{15}N + H$	0.088				
$^{28}Si + H$	0.080				
${}^{13}C + H$	0.074				
20 Ne + H	0.073				
56 Fe + H	0.058				