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1. GCR: brief introduction
2. XS uncertainties ≫ GCR data uncertainties
3. Which reactions matter? Ranking for GCRs
4. Conclusions

GCR = Galactic cosmic rays
XS = cross sections

https://arxiv.org/abs/1803.04686
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.98.034611


  

Cosmic ray spectrum and sources

Sun

Virgo cluster (ESO)
Transition galactic vs extragalactic

→ CR sources and transport?
→ Origin of spectral features, composition, anisotropy?

Milky way (artist view)

M87 (HST)

Tycho's SNR
(Chandra) 

Solar system

1. Introduction

AMS
BESS

PAMELA

CALET
DAMPE

ISS-
CREAM



  

Elemental spectra

Beringer et al., PRD 86, 010001 (2012)

GCR data: abundances

Bauch et al., AdSR 53 (2014)

Secondary species
(not in CR sources)

...

Primary species

1. Introduction

→ Origin of ‘universal’ power law (E-2.8)?
→ Abundances of elements/isotopes? 
→ CR anisotropy (d<10-3)  



  

Elemental spectra

Beringer et al., PRD 86, 010001 (2012)

N.B.: rare CRs produced by H,He + ISM
→ How well do we know the astro. production? 
→ Is it a good place to look for dark matter?

Protons and He
vs

diffuse g-rays, pbar, e- and e+

g He

e-

_
p

e+

p

Beischer et al. (2009)

GCR data: rare production

→ Origin of ‘universal’ power law (E-2.8)?
→ Abundances of elements/isotopes? 
→ CR anisotropy (d<10-3)  

1. Introduction



  

R
☼ 

~ 8 kpc

(nuclear physics)(plasma physics)

(astrophysics + particle physics)

Galactic
wind

Tycho's SNR

size ~ 30 kpc
<t> ~ 20 Myr

GCR journey

1. Introduction

Nuclear reactions
(ISM ~ 90%H + 10% He)

● Inelastic XS (e.g., 12C+H → X)
● Production XS (e.g., 12C+H → 11B+X)



  

R
☼ 

~ 8 kpc

Galactic
wind

Tycho's SNR

Milky-Way dark matter halo
● ~ spherical halo
● radius ~300 kpc

p, d, e+

p, He, C

p, d, e+, B, g

GCR journey



Installed on ISS in May 2011
  → Circular orbit, 400 km, 51.6°
  → Continuous operation 24/7
  → Average rate ~700 Hz (60 millions particles/day)

More than 100  billion events so far!

A game-changing experiment
→ high precision data
→ anomalies detected in spectra

AMS experiment

1. Introduction
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AMS-02 proton flux
Aguilar et al., PRL 114 (2015)
→ based on 300 million events

AMS results: ~3% uncertainties!

IV. AMS

… and uncertainties

→ most difficult part of the analysis
→ stat. uncertainties sub-dominant 



  

Aguilar et al., PRL 120, 021101 (2018)

→Break seen in all data
(primary and seconday species)

AMS results: spectral break in all nuclei!

→ most likely transport (not source spectrum)
 [coupling CR/B/gas via MHD]

1. Introduction

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.021101


Installed in 2017         Installed in 2015

DAMPE satellite 

Launched  in 2015

Other experiments taking data

… but data interpretation
limited by XS uncertainties!

→ A bright present (and near future)
for high-energy cosmic-rays

+

1. Introduction



  

“Nuclear physics for GCRs in the AMS-02 era”
LPSC (2012)

https://indico.in2p3.fr/event/7012/

“XSCRC2017: Cross sections for Cosmic Rays”
CERN (2017)

https://indico.cern.ch/event/563277/

1. GCR: brief introduction
2. XS uncertainties ≫ GCR data uncertainties
3. Which reactions matter? Ranking for GCRs
4. Conclusions

https://indico.in2p3.fr/event/7012/
https://indico.cern.ch/event/563277/


  

CR modelling requires

● Reaction cross-section
(CR destruction)

● Production cross sections
(secondary species)

on ISM 
(~ 90% H, 10% He)

Various approaches
→ Microscopic
→ Semi-empirical
→ Parametric

2. XS and GCRs

XS data: inelastic and production



  

CR modelling requires

● Reaction cross-section
(CR destruction)

● Production cross sections
(secondary species)

on ISM 
(~ 90% H, 10% He)

Various approaches
→ Microscopic
→ Semi-empirical
→ Parametric

→ No data above a few GeV/n

Reinert & Winkler, JCAP 01, 055 (2018)

Tomassetti, PRD 93, 3005 (2017)

2. XS and GCRs

XS data: illustration with B and C

http://adsabs.harvard.edu/abs/2018JCAP...01..055R
http://adsabs.harvard.edu/abs/2017PhRvD..96j3005T


  

CR modelling requires

● Reaction cross-section
(CR destruction)

● Production cross sections
(secondary species)

on ISM 
(~ 90% H, 10% He)

Various approaches
→ Microscopic
→ Semi-empirical
→ Parametric

→ XS uncertainties ~ 10-15 %

→ AMS-02 uncertainties ~ 3%
→ No data above a few GeV/n

Reinert & Winkler, JCAP 01, 055 (2018)

Tomassetti, PRD 93, 3005 (2017)

→ Systematics from XS dominate over data CR uncertainties
Maurin, Putze, and Derome, A&A 516, 67 (2010)

2. XS and GCRs

XS data: impact on GCRs

http://adsabs.harvard.edu/abs/2018JCAP...01..055R
http://adsabs.harvard.edu/abs/2017PhRvD..96j3005T
http://adsabs.harvard.edu/abs/2010A%26A...516A..67M


  

New XS data required!
→ Which reactions are the most important, how many matter?
→ How to have a proper error budget (from XS to fluxes)

2. XS and GCRs

XS data: impact on GCRs



  

1. GCR: brief introduction
2. XS uncertainties ≫ GCR data uncertainties
3. Which reactions matter? Ranking for GCRs
4. Conclusions

Génolini, Maurin, Moskalenko & Unger
https://arxiv.org/abs/1803.04686

To appear in PRC 
(as an Editors' Suggestion)

https://arxiv.org/abs/1803.04686


  

B      =      10B        +      11B
                 (~30%)           (~70%)

1-step channels

Reactions contributing to 11B

3. Ranking

Reactions involved: 1-step reactions

Illustration with GCR Boron



  2-step channels

B      =      10B        +      11B
                 (~30%)           (~70%)

Reactions contributing to 11B

3. Ranking

Reactions involved: 2-step reactions

Illustration with GCR Boron



  

Reactions to consider

a (CRs) + b (H, He) → c (CRs + ghost nuclei)

Ghost nuclei to account for
● Exemple

● Relevant list for Li, Be, B fluxes

3. Ranking

Reactions involved: short-lived nuclei



  

Reactions to consider

a (CRs) + b (H, He) → c (CRs + ghost nuclei)

Calculate f
abc

Ghost nuclei to account for
● Exemple

● Relevant list for Li, Be, B fluxes

3. Ranking

Flux impact: f
abc

 coefficients



  

Reactions to consider

a (CRs) + b (H, He) → c (CRs + ghost nuclei)

Calculate f
abs

…   et voilà!

Ghost nuclei to account for
● Exemple

● Relevant list for Li, Be, B fluxes

N.B.: ranking robust against transport/source parameters
3. Ranking

Flux impact: ranking XS



  
N.B.: ranking robust against transport/source parameters

This is what it looks like...

3. Ranking

Flux impact: ranking XS



  

This is what it looks like...

3. Ranking

Flux impact: repeated for Li to N



  

Correlated uncertainties?
→ measurements from same experimental setup
→ parametrizations induce systematics

Uncorrelated uncertainties?
→ data from different experimental setups

Looking at the data/parameterizations
● correlated for all fragments of a given projectile
● Uncorrelated between different projectile

3. Ranking

XS improvement → flux prediction improvement



  

Correlated uncertainties?
→ measurements from same experimental setup
→ parametrizations induce systematics

Uncorrelated uncertainties?
→ data from different experimental setups

Looking at the data/parameterizations
● correlated for all fragments of a given projectile
● Uncorrelated between different projectile

→ Ordering insensitive on 
error assumption

→ Calculated for Li, Be, 
B, N, and C

(projectile + target) to measure with high priority

3. Ranking

XS improvement → flux prediction improvement



  

1. GCR: brief introduction
2. XS uncertainties ≫ GCR data uncertainties
3. Which reactions matter? Ranking for GCRs
4. Conclusions



  

Wealth of high precision GCR data
but

interpretation limited by insufficient quality of XS data/models

→ Need support for nuclear physics and high energy physics communities
● ~few % accuracy required on key channels (100 MeV/n to multi-GeV/n)
● improve models if possible...

In Génolini et al. (1803.04686), we provide:
● Motivation for XS community to propose new experiments
● Key reactions for which we need better data (for Li to N GCR fluxes)
● C

ab
 coeff. to calculate # of interactions required (to plan an experiment) 

● XS data and models (in hundreds of plots) and references

→ the GCR community, as a whole, would be extremely grateful for your help!
● NA61/SHINE proposal SPSC-P-330 at 10 GeV/n (M. Unger)
● Other candidates?

XS improvement → flux prediction improvement

USINE propagation code
https://arxiv.org/abs/1807.02968

https://lpsc.in2p3.fr/usine

Public ressources for GCRs

Cosmic-ray data base (CRDB)
A&A 569, A32 (2014)

https://lpsc.in2p3.fr/crdb

https://arxiv.org/abs/1803.04686
https://arxiv.org/abs/1807.02968
https://lpsc.in2p3.fr/usine
http://adsabs.harvard.edu/abs/2014A%26A...569A..32M
https://lpsc.in2p3.fr/crdb
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Particle physics= + Astroparticle physics
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Particle physics
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I. Introduction
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TRD 
Identify e+, e-

Silicon Tracker
 Z, p

ECAL 
Identify e+,e- 
E of e+, e-, γ

RICH 
 Z, β

TOF
 Z, β 

 Magnet
R, ±Z

5m x 4m x 3m
7.5 tons

A TeV precision, multipurpose 
spectrometer in space.

A(lpha) M(agnetic) S(pectrometer)

IV. AMS



Sub-detector redundancy

● Particle ID and its E (and/or R)
● Calibration
● Control systematics

Each analysis specific (flux/ratio, leptons/nuclei)
●  ID and E (or R) measurement
●  Background from other particles
●  Background from interaction in detector

A(lpha) M(agnetic) S(pectrometer)

Charge reconstruction
with tracker and time-of-flight

IV. AMS

+ rely on
- Beam test
- In-flight data
- Monte Carlo sims



  

Solar 
modulation

effect

Aguilar et al., PRL 110, 1102 (2013
)Accardo et al., PRL 113, 121101 (2014
)

N.B.: see also e- and e+ in Aguilar et al., PRL 113, 121102 (2014) 

Positron fraction, e-, e+ and e-+e+ spectra  used to
test astrophysical and/or dark matter hypothesis

● Contribution from local SNRs/pulsars?
® e.g., Delahaye et al., A&A 524, A51 (2010)

● Dark matter hypothesis?
® e.g., Boudaud et al., A&A 575, 67 (2015)
[N.B.: no boost, Lavalle et al., A&A 479, 427 (2008)]

Antiprotons

®  Seems consistent with astrophysics only

Kappl et al., JCAP 09, 023 (2015)

Dark matter detection with AMS-02?

http://adsabs.harvard.edu/abs/2013PhRvL.110n1102A
http://adsabs.harvard.edu/abs/2013PhRvL.110n1102A
http://adsabs.harvard.edu/abs/2014PhRvL.113l1101A
http://adsabs.harvard.edu/abs/2014PhRvL.113l1101A
http://adsabs.harvard.edu/abs/2014PhRvL.113l1102A


  

Contributions (relative and absolute) 
at 10 GeV/n

→ Which reactions are the most important, how many matter?
→ How to have a proper error budget (from XS to fluxes)

‘Origin’ of Li to N fluxes



  

→ Known result: 
dominant channels ~ most abundant CRs

[secondaries µ Source abund * σ]

HEAO-3 abundances at ~10 GeV/n

→ Many channels contribute!

1-step and 2-step only (>2 steps~5%)

Ranking of channels (sum over all targets + ghosts)



  

Few reactions to measure to get Li, Be, and B



  

N = number of interactions (poissonian distribution)
V = covariance of the measured number of fragments

Planning an experiment: Cab and # of interactions
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