Nuclear physics measurements for the r-process

Beyhan BASTIN (GANIL)

Which nuclei are concerned? Depends on the site

- extremely neutron-rich (Ye ≈ 0.04)
- close to neutron drip-line
- extending to very large neutron (N \approx 200) and proton numbers (Z \approx 90)
- forging the heaviest elements (A>130) in the Universe (e.g. gold and platinum)

Nucleosynthesis for neutrino-driven winds (snapshot; Martin et al. 2015)

- neutron-rich, broad distribution ($0.2 \le Ye \le 0.4$)
- further away from neutron drip-line
- extending to moderately large neutron and proton number
- forging heavy elements, but usually with nucleon numbers A < 130

Which nuclei are concerned? Depends on the site

Nucleosynthesis for neutrino-driven winds (Rosswog et al. 2017)

- the heaviest elements, A>130
- robustly producing the "platinum peak" at A= 195
- very little variation between different mergers

- lighter r-process elements, A <130
- large variation between different astrophysical events expected

http://compact-merger.astro.su.se/Macronovae_04_2017.html

Which nuclear processes are involved?

Abundance weighted timescales of important channels during the freeze-out phase for a hot r-process

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$$\frac{dN(Z,A)}{dt} = \begin{cases} Nn. N(Z, A - 1). < \sigma v >_{Z,A-1} & \rightarrow (n,\gamma) \text{ reaction} \\ + N(Z, A + 1). \lambda_{\gamma,n}^{Z,A+1} & \rightarrow (\gamma,n) \text{ reaction} \\ + N(Z - 1, A). \lambda_{\beta}^{Z-1,A} & \rightarrow \beta \text{ decay} \\ + \sum_{k=1}^{3} N(Z - 1, A + k). \lambda_{\beta kn}^{Z,A+1} & \rightarrow \beta \text{ -delayed k neutron emission} \\ + N(Z + 2, A + 4). \lambda_{\alpha}^{Z+2,A+4} & \rightarrow \alpha \text{ decay} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{f},Af} . N(Z_{f},A_{f}) & \rightarrow \text{spontaneous fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{f},Af} . N(Z_{f}-1,A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z,Af-1} . N(Z_{f}-1,A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ - N(Z, A). \left[N_{n}. < \sigma v >_{Z,A} + \lambda_{\gamma,n}^{Z,A} + \lambda_{\beta}^{Z,A} + \sum_{k=1}^{3} \lambda_{\beta kn}^{Z,A} \right] \\ - N(Z, A). \left[\lambda_{\alpha}^{Z,A} + \lambda_{f}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{nf}^{Z,A} \right] \\ + \gamma \text{ induced fission} \\ + \text{ neutrino interactions with nuclei for some scenarios} \end{cases}$$

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$$\frac{dN(Z,A)}{dt} = \begin{cases} Nn. N(Z, A - 1). < \sigma \nu >_{Z,A-1} & \rightarrow (n,\gamma) \text{ reaction} \\ + N(Z, A + 1). \lambda_{\gamma,n}^{Z,A+1} & \rightarrow (\gamma,n) \text{ reaction} \\ + N(Z - 1, A). \lambda_{\beta}^{Z-1,A} & \rightarrow \beta \text{ decay} \\ + \sum_{k=1}^{3} N(Z - 1, A + k). \lambda_{\beta kn}^{Z,A+1} & \rightarrow \beta \text{ -delayed k neutron emission} \\ + N(Z + 2, A + 4). \lambda_{\alpha}^{Z+2,A+4} & \rightarrow \alpha \text{ decay} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af} . N(Z_{f},A_{f}) & \rightarrow \text{spontaneous fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p}-1,A_{f}}. N(Z_{f},A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af-1}. N(Z_{f},A_{f}-1) & \rightarrow n \text{ -induced fission} \\ - N(Z,A). \left[N_{n}. < \sigma \nu >_{Z,A} + \lambda_{\gamma,n}^{Z,A} + \lambda_{\beta}^{Z,A} + \sum_{k=1}^{3} \lambda_{\beta kn}^{Z,A} \right] \\ - N(Z,A). \left[\lambda_{\alpha}^{Z,A} + \lambda_{f}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{nf}^{Z,A} \right] \\ + \gamma \text{ induced fission} \\ + \text{ neutrino interactions with nuclei for some scenarios} \\ => \text{ Masses, } \beta \text{-decay properties, neutron capture rates, fission rates} \\ \end{cases}$$

Arnould, M. et al. Phys.Rept. 450 (2007) 97-213

• Masses

Neutron Number (N)

[MeV]

ŝ

Abundance varitions = f (mass model) (hot r-process trajectory)

Modern precise mass measurement techniques

	Penning Trap	MR-TOF	TOF in RING		
Quantity	cyclotron freq. abs. mass	TOF in Mirrors rel. mass	TOF in RING rel. mass		
Accuracy determination	<10 ⁻⁷ (MRP ∝ T _{1/2)}	<10 ⁻⁶ (MRP:>200,000)	<10 ⁻⁶ (MRP: ?)		
meas. period	~10ms - 1s	~1ms	~100µs		
practical lifetime, intensity limit	10~100ms <0.1 cps	1~10ms <0.01 cps	<1ms 1 c/day ?		
status	established	development	future tech.		
operation	not difficult	simple	unknown/difficult		
competition	ISOLDE, MSU,ANL, JYFL, etc	None on-line	GSI-ESR		
Calibration	Perfect (calib. ¹² C)	easy (isobar)	difficult (same A/Z)		

In Europe : exp. mainly @ ISOLDE / JYFL / GSI

Soon also in France : Alto (+ SPIRAL2-phase)

E. Minaya et al., mass-program (Ag) + in-trap spec (2019)

• Masses

mass variations of +/- 500MeV (FRDM12) = f (astro conditions)

M.R. Mumpower et al. Progr. in Part. and Nucl. Phy. 86 (2016) 86–126

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$$\frac{dN(Z,A)}{dt} = Nn. N(Z, A - 1). < \sigma v >_{Z,A-1} \rightarrow (n,\gamma) \text{ reaction} + N(Z, A + 1). \lambda_{\gamma,n}^{Z,A+1} \rightarrow (\gamma,n) \text{ reaction} + N(Z - 1, A). \lambda_{\beta}^{Z-1,A} \rightarrow \beta \text{ decay} + \sum_{k=1}^{3} N(Z - 1, A + k). \lambda_{\beta kn}^{Z,A+1} \rightarrow \beta \text{ -delayed k neutron emission} + N(Z + 2, A + 4). \lambda_{\alpha}^{Z+2,A+4} \rightarrow \alpha \text{ decay} + \sum_{f} q_{Z_{f},Af}(Z,A). \lambda_{f}^{Z_{f},Af}. N(Z_{f},A_{f}) \rightarrow \text{spontaneous fission} + \sum_{f} q_{Z_{f},Af}(Z,A). \lambda_{f}^{Z_{f},Af-1}. N(Z_{f}-1,A_{f}) \rightarrow \beta \text{ -delayed fission} + \sum_{f} q_{Z_{f},Af}(Z,A). \lambda_{f}^{Z_{f},Af-1}. N(Z_{f},A_{f}-1) \rightarrow n\text{-induced fission} - N(Z, A). \left[N_{n}. < \sigma v >_{Z,A} + \lambda_{\gamma,n}^{Z,A} + \lambda_{\beta}^{Z,A} + \sum_{k=1}^{3} \lambda_{\beta kn}^{Z,A} \right] - N(Z, A). \left[\lambda_{\alpha}^{Z,A} + \lambda_{f}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{nf}^{Z,A} \right] + \gamma \text{ induced fission} + neutrino interactions with nuclei for some scenarios} => Masses, \beta-decay properties, neutron capture rates, fission rates Arnould, M. et al. Phys.Rept. 450 (2007) 97-213$$

β-decay properties

 $\square \ \beta \text{-decay half-lives}$

$$\frac{1}{T_{1/2}} = \sum_{0 \le E_i \le Q_\beta} S_\beta(E_i) \cdot f(Z, \mathbf{Q_\beta} - E_i)$$

- $S_{\beta}(E_i)$: b-strength function
- $f(Z, Q_{\beta}-E_i)$: Fermi function
- $Q_{\beta} = M(Z,N)-M(Z+1,N-1)$
- \square β -delayed neutron emission probability

$$\boldsymbol{P_n} = \frac{\sum_{S_n \le E_i \le Q_\beta} S_\beta(E_i).f(Z, \boldsymbol{Q_\beta} - E_i)}{\sum_{0 \le E_i \le Q_\beta} S_\beta(E_i).f(Z, \boldsymbol{Q_\beta} - E_i)}$$

- Discrepancies for longest $T_{1/2}$, due to phase space factor, which goes $(Q_{\beta} E_i)^5$
- less than factor 10 for short half-lives
- A. Algora, M. Fallot et al., total absorption spectroscopy (Sn and In)
- A. Gottardo et al., Beta delayed neutron spectroscopy...

 \Rightarrow Experimental measurements using TAS, Bedo, MONSTER, VANDLE...

- A. Algora, M. Fallot et al., total absoprtion spectroscopy (Sn and In)
- A. Gottardo et al., Beta delayed neutron spectroscopy...

 \Rightarrow Experimental measurements using TAS, Bedo, MONSTER, VANDLE...

« Measurement of the decay characteristics of ⁹⁰Se relevant to the r-process nucleosynthesis »

Letter of Intent from T. Kurtukian Nieto (CENBG)

B. Bastin (GANIL)

« Measurement of the decay characteristics of ⁹⁰Se relevant to the r-process nucleosynthesis » Letter of Intent from T. Kurtukian Nieto (CENBG)

z	88Zr	89Zr	90Zr	912r	92Z1	93Zr	94Zr	95Zr	96Zr	97Zr	98Zr	99Zr	100Zr	1012r	102Zr	1032r	1042r
	87Y	88Y	89Y	90Y	91Y	92Y	93Y	94Y	95Y	96Y	97Y	98Y	99Y	100Y	101Y	102Y	103Y
38	86Sr	87 Sr	88Sr	89Sr	90Sr	91Sr	92Sr	93Sr	94Sr	95Sr	96Sr	97Sr	98Sr	99Sr	100Sr	101 Sr	102Sr
	85Rb	86Rb	87Rb	88Rb	89Rb	90Rb	91Rb	92Rb	93Rb	94Rb	95Rb	96Rb	97Rb	98Rb	99Rb	100Rb	101Rb
36	84Kr	85Kr	86Kr	87Kr	88Kr	89Kr	90Kr	91Kr	92Kr	93Kr	94Kr	95Kr	96Kr	97Kr	98Kr	99Kr	100Kr
	83Br	84Br	85Br	86Br	87Br	88Br	89Br	90Br	91Br	92Br	93Br	94Br	95Br	96Br	97Br	98Br	
34	825 c	835 c	845 c	855e	865e	875e	885 c	895e	905e	915e	925 e	935e	945e	955e			
	81As	82As	83As	84As	85As	86As	87As	88As	89As	90As	91 As	92As	^{88,89} Ge				
32	80Ge	81Ge	82Ge	83Ge	84G c	85G e	86Ge	87Ge	88G e	89Ge	90Ge		^{88,89,90?} As ⁹⁰⁻⁹² Se				
	48		50		52		54		56		58	60 62			62		N

 β decay properties (half-lives and Pn) of neutron-rich Ge, As and Se isotopes have a direct influence on the production of Sr, Y, and Zr.

Some of these nuclei are accessible at ALTO (LoI 90Se T. Kurtukian-Nieto)

B. Bastin (GANIL)

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$\frac{dN(Z,A)}{dt} =$	Nn. N(Z, A – 1). $< \sigma \nu >_{Z,A-1}$	\rightarrow (n, γ) reaction
	+ N(Z, A + 1). $\lambda_{\gamma,n}^{Z,A+1}$	\rightarrow (γ ,n) reaction
	+ N(Z – 1, A). $\lambda_{\beta}^{Z-1,A}$	$\rightarrow \beta$ decay
Production _	$+\sum_{k=1}^{3} N(Z-1, A+k) \cdot \lambda_{\beta k n}^{Z, A+1}$	$\rightarrow \beta$ –delayed k neutron emission
	+ N(Z + 2, A + 4). $\lambda_{\alpha}^{Z+2,A+4}$	$\rightarrow \alpha$ decay
	+ $\sum_{f} q_{Z_f,Af}(Z,A) \lambda_f^{Z_f,Af} N(Z_f,A_f)$	\rightarrow spontaneous fission
	+ $\sum_{f} q_{Z_f,Af}(Z,A) \lambda_f^{Z_f-1,A_f} N(Z_f-1,A_f)$	$\rightarrow \beta$ -delayed fission
	+ $\sum_{f} q_{Z_{f},Af}(Z,A) \lambda_{f}^{Z_{f},Af-1} N(Z_{f},A_{f}-1)$	\rightarrow n-induced fission
Destruction	$-N(Z, A). N_n < \sigma \nu >_{Z,A} + \lambda_{\gamma,n}^{Z,A} + \lambda_{\beta}^{Z,A}$	$+\sum_{k=1}^{3}\lambda_{\beta kn}^{Z,A}$
Destruction	- N(Z, A). $\lambda_{\alpha}^{Z,A} + \lambda_{f}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{n f}^{Z,A}$	
	$+\gamma$ induced fission	
	+ neutrino interactions with nuclei for some	scenarios
=>	Masses, β -decay properties, neutron capture	rates, fission rates
	Ari	nould, M. et al. Phys.Rept. 450 (2007) 97-213

Neutron capture and photodisintegration rates ulletHauser-Feshbach statistical model

□ The effective stellar rate of $I + j \rightarrow L + i$ reaction at T (cm³ s⁻¹ mole⁻¹):

$$N_{\rm A} \langle \sigma v \rangle_{jl}^*(T) = \left(\frac{8}{\pi m}\right)^{1/2} \frac{N_{\rm A}}{(kT)^{3/2} G_I(T)} \int_0^\infty \sum_{\mu} \frac{(2J_I^{\mu} + 1)}{(2J_I^0 + 1)} \sigma_{jl}^{\mu}(E) E \exp\left(-\frac{E + \varepsilon_I^{\mu}}{kT}\right) dE,$$

- N₄ : Avogadro number
- E : relative energy

- J:spin
- m : reduced mass

- G₁: partition function
- ε : excitation energy of state μ ($\mu = 0$ for the ground state)

\Box (n, γ) cross section:

$$\sigma_{n,\gamma}^{\mu}(E) = \frac{\pi}{k^2 \left(2J_I^{\mu} + 1\right) (2J_n + 1)} \sum_{J^{\pi}} (2J + 1) \frac{T_n^{\mu}(J^{\pi})T_{\gamma}(J^{\pi})}{T_{tot}(J^{\pi})},$$

- k : neutron wave number
- T_n^{μ} and T_{ν} : transmission functions for the formation and decay channels => models of level densities & g-strength functions

Photo-dissociation rate:

$$\lambda_{(\gamma,j)}^*(T) = \frac{(2J_I^0 + 1)(2J_j + 1)}{(2J_L^0 + 1)} \frac{G_I(T)}{G_L(T)} \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2} \langle \sigma v \rangle_{(j,\gamma)}^* e^{-Q_{j\gamma}/kT},$$

Neutron capture and photodisintegration rates

P. Adsley et al., Beta-delayed gamma emission (neutron-rich rare-earth nuclides)

Difference between $\sigma_{HF model}(\mathbf{n}, \gamma)$ and $\sigma_{KADoNiS}(\mathbf{n}, \gamma)$ (n, γ) rates variation of factor 100 = f (astro conditions)

a 75

Ñ

- Measurements via surrogate method (ex : (d,p))
- β-Olso method => level density & γ-strength function
 Exp. Project : on enhanced E1 strengths (impact in the gSF => photo-desintegration rate)

M.R. Mumpower et al. Progr. in Part. and Nucl. Phy. 86 (2016) 86-126

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$$\frac{dN(Z,A)}{dt} = \begin{bmatrix} Nn. N(Z, A - 1). < \sigma v >_{Z,A-1} & \rightarrow (n,\gamma) \text{ reaction} \\ + N(Z, A + 1). \lambda_{\gamma,n}^{Z,A+1} & \rightarrow (\gamma,n) \text{ reaction} \\ + N(Z - 1, A). \lambda_{\beta}^{Z-1,A} & \rightarrow \beta \text{ decay} \\ + \sum_{k=1}^{3} N(Z - 1, A + k). \lambda_{\beta kn}^{Z,A+1} & \rightarrow \beta \text{ -delayed k neutron emission} \\ + N(Z + 2, A + 4). \lambda_{\alpha}^{Z+2,A+4} & \rightarrow \alpha \text{ decay} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af} . N(Z_{f}A_{f}) & \rightarrow \text{ spontaneous fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af-1} . N(Z_{f}-1,A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af-1} . N(Z_{f}-1,A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ - N(Z,A). \left[N_{n}. < \sigma v >_{Z,A} + \lambda_{\gamma,n}^{Z,A} + \lambda_{\beta}^{Z,A} + \sum_{k=1}^{3} \lambda_{\beta kn}^{Z,A} \right] \\ - N(Z,A). \left[\lambda_{\alpha}^{Z,A} + \lambda_{\alpha}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{\beta f}^{Z,A} + \lambda_{\beta f}^{Z,A} \right] \\ + \gamma \text{ induced fission} \\ + \text{ neutrino interactions with nuclei for some scenarios} \\ => \text{ Masses, } \beta \text{-decay properties, neutron capture rates, fission rates} \\ \end{bmatrix}$$

Arnould, M. et al. Phys.Rept. 450 (2007) 97-213

Fission rates / fission distributions

Evolution of different fission channels predicted by BCPM and FRDM+TF (neutron star mergers)

- \square Evolution of different n-induced fission and (n, γ) cross section for:
- Different combinations of level densities + gamma ray-strength

Collective inertias schemes

Sets of fission barriers

S. A. Giuliani, G. Martinez-Pinedo, L. M. Robledo 2018

Fission rates / fission distributions

Sensitivity to the fission fragment distribution

Facilities in France : Licorne (ALTO), ILL, GANIL

+ Strong theoretical involvement : CENBG (GEF), CEA-DAM

Abundance variation of a given ${}^{A}_{Z}X$ nucleus

$$\frac{dN(Z,A)}{dt} = \begin{cases} Nn. N(Z, A - 1). < \sigma v >_{Z,A-1} & \rightarrow (n,\gamma) \text{ reaction} \\ + N(Z, A + 1). \lambda_{\gamma,n}^{Z,A+1} & \rightarrow (\gamma,n) \text{ reaction} \\ + N(Z - 1, A). \lambda_{\beta}^{Z-1,A} & \rightarrow \beta \text{ decay} \\ + \sum_{k=1}^{3} N(Z - 1, A + k). \lambda_{\beta kn}^{Z,A+1} & \rightarrow \beta \text{ -delayed k neutron emission} \\ + N(Z + 2, A + 4). \lambda_{\alpha}^{Z+2,A+4} & \rightarrow \alpha \text{ decay} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af} . N(Z_{f}A_{f}) & \rightarrow \text{ spontaneous fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af-1} . N(Z_{f}A_{f}) & \rightarrow \beta \text{ -delayed fission} \\ + \sum_{f} q_{Z_{p}Af}(Z,A). \lambda_{f}^{Z_{p},Af-1} . N(Z_{f}A_{f}-1) & \rightarrow n \text{ -induced fission} \\ - N(Z,A). \left[N_{n} < \sigma v >_{Z,A} + \lambda_{GA}^{Z,A} + \lambda_{GA}^{Z,A} + \sum_{k=1}^{3} \lambda_{\beta kn}^{Z,A} \right] \\ - N(Z,A). \left[\lambda_{\alpha}^{Z,A} + \lambda_{f}^{Z,A} + \lambda_{Gf}^{Z,A} + \lambda_{nf}^{Z,A} \right] \\ + \gamma \text{ induced fission} \\ + \text{ neutrino interactions with nuclei for some scenarios} \\ => \text{ Masses, } \beta \text{-decay properties, neutron capture rates, fission rates} \\ Arnould, M, et al. Phys.Rept. 450 (2007) 97-213 \end{cases}$$

Neutrino flux

Time evolution of the $\boldsymbol{\nu}$ luminosity

Nuclear physics inputs Influence the composition and v_e rate

- EC : crucial all along the life of a star (particularly in massive stars → CCSN!)
- <u>but</u>: model uncertainties (especially in n-rich nuclei!)

Study of core collapse supernovae (GANIL, LPCCaen, JYFL)

B. Bastin, A. Kankainen (experiment) / F. Gulminelli, A. Fantina (theory) et the collaboration PhD thesis of S. Giraud (astrophysics) and L. Canete (nuclear structure)

Masses : impact on the EC rate

- Very precise mass values (within ~100 KeV) are necessary for the computation of Q in EC, but this is not all!
- Exotic nuclei around N=50 and N=82 dominate because they are predicted to be magic. Magicity quenching would strongly affect EC.

Shell gap value will affect the electron capture rate very significantly!

Study of core collapse supernovae (GANIL, LPCCaen, JYFL)

B. Bastin, A. Kankainen (experiment) / F. Gulminelli, A. Fantina (theory) et the collaboration PhD thesis of S. Giraud (astrophysics) and L. Canete (nuclear structure)

Masses : impact on the nuclei distribution in SNII modelling (S. Giraud PhD)

Structure of nuclei around ⁷⁸Ni will affect the path => EC rate

G. Grams, S. Giraud et al. PRC 97, 035807 (2018)

Study of core collapse supernovae (GANIL, LPCCaen, JYFL)

B. Bastin, A. Kankainen (experiment) / F. Gulminelli, A. Fantina (theory) et the collaboration PhD thesis of S. Giraud (astrophysics) and L. Canete (nuclear structure) 5

New mass measurements around 78Ni @ JYFL (Finland):

Summary

- Extensive mass measurements and decay studies are required
- r-process : along the path with some priorities (to be clarified)
- Core-collapse : around ⁷⁸Ni and ¹²⁶Pd

• Study of specific contributions

- Fission rates and distribution (feedback)
- Enhanced E1 strengths (impact in the gSF => photo-desintegration rate)

P. Adsley et al., Beta-delayed gamma emission (neutron-rich rare-earth nuclides)...

• Possible working strategy :

Define list of key nuclei based on recent sensitivity studies.

"The impact of individual nuclear properties on r-process nucleosynthesis"

M.R. Mumpower et al. / Progress in Particle and Nuclear Physics 86 (2016) 86–126

Table 1

Important nuclei from sensitivity studies given criterion $F_{max} \ge 0.1$ for at least one astrophysical condition: (a) low entropy hot wind, (b) high entropy hot wind, (c) cold wind and (d) neutron star merger. Asterisk denotes F_{max} below threshold of 0.01. Dash denotes nucleus was not in the study.

Nucleus		β-deca	y (factor	10)		Neutro	on capture	(factor 1	00)	Nuclea	Nuclear mass (+/- 500 keV FRDM2012)				
Ζ	Ν	Α	F ^a _{max}	F ^b _{max}	F ^c _{max}	F ^d _{max}	F ^a _{max}	F ^b _{max}	F ^c _{max}	F ^d _{max}	F ^a max	F ^b _{max}	F ^c _{max}	F ^d _{max}	
30	49	79	*	0.03	0.08	*	*	0.08	0.20	*	-	-	-	-	
30	52	82	*	0.03	0.03	*	*	*	0.22	*	*	*	*	*	
30	53	83	*	*	*	*	*	0.06	0.11	*	*	*	*	*	
30	54	84	0.46	0.40	0.05	*	*	*	0.80	*	*	*	*	*	
30	55	85	*	*	0.02	*	*	0.29	0.03	*	*	*	*	*	
	 T_{1/2} : progenitor abundances, Process speed β-delayed neutron emission branching : final abundances 						Influe cases beco	ential in t (when p mes negli	ץ he cold a hotodisso gible.)	nd merg ociation	er Lo	ocation o	۲ f the pat	h	

- Discussion / validation during a specific workshop (atelier théorie CEA...) and synergy experiment-theory.