Nuclear measurements for astrophysics

Nicolas de Séréville Institut de Physique Nucléaire d'Orsay

- Nucleosynthetic processes and key nuclear reactions
- Specificity of charged particle reactions & experimental approaches
- A (few) selected cases in BBN, explosive burning, massive stars and globular clusters

Réunion groupes de travail GdR Resanet et OG, Observatoire de Paris, September 24th - 25th

Nuclear landscape and astrophysical processes

What are the key reactions?

Approach: sensitivity studies using post-processing Monte Carlo calculations

Method:

- Full hydrodynamical calculations still time consuming
- Use representative time-dependent density and temperature profiles
- Every reaction rate is sampled according to its uncertainty distribution

Criteria:

- Significant impact on energy generation or nucleosynthesis
- Search for correlations between isotopic yields and reaction rates

BBN nuclear network

Some recent Monte Carlo sensitivity studies

Astrophysical process / site	Reference
BBN	Coc+ (2014) JCAP
Classical novae	Iliadis+ (2002) ApJS
X-ray burst	Parikh+ (2008) ApJS
Main s-process	Cescutti+ (2018) MNRAS
Weak s-process	Nishimura+ (2017) MNRAS
p-process	Rauscher+ (2016) MNRAS Nishimura+ (2017) MNRAS
r-process	Munpower+ (2016) PPNP

Nuclear ingredients

Nucleosynthesis network depends on several rates

- Charged-particle and neutron induced reaction rates
- Neutrino and photon interaction rates

- β-decay rates
- Electron capture rates

Thermonuclear reaction rate:
$$N_A < \sigma v > = \sqrt{\frac{8}{\pi\mu}} \frac{N_A}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{(-E/k_BT)} dE$$

Two-body reaction

Resonant case (Breit Wigner):

$$\sigma(E) = \pi \lambda^2 \omega \frac{\Gamma_p(E) \Gamma_x(E+Q)}{(E-E_R)^2 + \Gamma_{tot}^2(E)/4}$$

- Resonance energy: $E_{R} = E_{X} S_{D}$
- Spin factor: $\omega \mu (2J_{R} + 1)$
- Partial widths ($\Gamma_{\rm p}$, $\Gamma_{\rm x}$) and total width

 $(\Gamma_{\rm tot} = \Gamma_{\rm p} + \Gamma_{\rm x} + \dots)$

• Q-value:
$$Q = (m_p + m_A - m_x - m_B)c^2$$

Charged particles reaction

Astrophysical energies are much below the Coulomb barrier e.g. quiescent burning: $E \sim 100$'s keV << $B_c \sim MeV$

Arbitrary units

Rapidly varying small cross-section

 $S(E) = \sigma(E)E\exp(2\pi\eta)$

Gamow window

 $p + {}^{16}O(T_6 = 90)$ Coulomb 0.9 Gamow peak penetrability MB distribution 0.8 0.7 96 keV = kT = 8 keV 0.6 0.5日 0.4日 0.3 $\Delta = 63 \text{ keV}$ 0.2 0.1 0.04 0.06 0.08 0.02 0.12 0.14 0.16 0.18 0.2 0.1 E_{c.m} (MeV)

Extremely small cross-sections

- 10^{-18} barns < σ < 10^{-9} barn
- ¹⁶O(p,γ)¹⁷F Iliadis+ (2008) PRC
 - S(90 keV) = 7.6 MeV.mb $\rightarrow \sigma = 6 \times 10^{-13} \text{ barn}$
 - ~ 5 counts per day (but background!)

Major experimental challenge

Experimental methods

Direct approach

- Measurements as low in energy as possible
 - \rightarrow (very) low cross-sections \times
- Main issue: background
 - Beam induced: target impurities, collimators, ...
 - Non beam induced: cosmic muons, natural background, neutron-induced reactions
- Main challenge: improve signal-to-noise ratio
 - Very long measurements (weeks, months, ...)
 - Ultra pure targets
 - High beam intensities (target heating effects)
 - High detection efficiency
- How to reduce background?
 - Measure underground with shielding \rightarrow e.g. LUNA
 - Coincidence measurements → e.g. STELLA (see S. Courtin's talk)
 - Recoil mass separator → e.g. DRAGON

Indirect approach

- Measurements with "high" incident energies

 → higher cross-sections
 ✓
- Possibility to use stable beams to study nuclei relatively close to the valley of stability
- Experimental conditions are somehow less constraining
- Main drawback:
 - Model dependent ×
 - Sensitivity to the parameter models
- Need to combine different approaches:
 - Transfer reactions $\rightarrow E_x, \Gamma_i$
 - Resonant elastic scattering $\rightarrow E_x, \Gamma_i, \Gamma_{tot}, J^{\pi}$
 - Trojan Hose Method \rightarrow S(E)
 - Coulomb dissociation, ANC, ...

Direct measurements should be performed whenever possible

Big-Bang Nucleosynthesis

Primordial nucleosynthesis (**BBN**) of light elements is one of the three observational pillars of the Big Bang model with the expansion of the Universe and the Cosmic Microwave Background (**CMB**) radiation

- When $T \le 10^9 \text{ K} \rightarrow \text{BBN begins:}$
 - D, ⁴He, ³He, ⁷Li synthesized via nuclear reactions
 - Abundances depend on $\Omega_{\rm B} h^2$
- (BBN+CMB) predictions for ³He, ⁴He agree with observations
 - D: recent 1% precision abundance determination Cooke+ (2018) ApJ Undergoing D(p, γ) measurement at LUNA Zavatarelli et al.
 - ⁷Li: $(^{7}Li/H)_{BBN} / (^{7}Li/H)_{obs} \rightarrow 3 !!!$
- Attempts to solve the ⁷Li problem:
 - Stellar atmosphere model? New ⁷Li stellar mechanism destruction? Physics beyond the standard model?
 - Nuclear solution? ⁷Li produced by ⁷Be EC
 - Additional ⁷Be destruction channels?
 - $^{7}\text{Be} + {}^{3}\text{He} \rightarrow {}^{10}\text{C}^{*}$
 - ⁷Be + ⁴He \rightarrow ¹¹C* Chakraborty+ (2011) PRD

Hypothetical states?

The ALTO facility

Accélérateur Linéaire et TANDEM à Orsay

Search for missing ^{10,11}C states

Experimental details:

- Charge exchange reactions:
 - $\rightarrow {}^{10}\text{B}({}^{3}\text{He,t}){}^{10}\text{C} \& {}^{11}\text{B}({}^{3}\text{He,t}){}^{11}\text{C} @ 35 \text{ MeV}$
- Targets: ¹⁰B/Au, ^{nat}B (80% ¹¹B), ¹²C, Si₂O₄, ¹⁹⁷Au
- Beam intensity: 100 pnA

Enge Split-Pole (magnetic spectrometer):

- $\Delta E/E = 5 \times 10^{-4}$
- $\Delta\Omega = 1.7 \text{ msr}$ (or more, but aberrations)

- No additional states in ¹⁰C nor ¹¹C
- If present, any ${}^{10}C(1^{-} \text{ or } 2^{-})$ state should have $\Gamma_{tot} > 590 \text{ keV}$ (95% CL)
- New ⁷Be(³He,p)⁹B and ⁷Be(³He, α)⁶Be reaction rates \rightarrow no impact on ⁷Li production

⁷Be + ^{3,4}He reaction channels don't alleviate ⁷Li problem

Classical novae and ¹⁸F nucleosynthesis

directly in the nova Gamow window. The remaining uncertainties for nova nucleosynthesis involve only a handful of reaction rates, particularly ${}^{18}F(p,\alpha)$, ${}^{25}Al(p,\gamma)$ and ${}^{30}P(p,\gamma)$, for which several experiments are being conducted (or have been proposed) at different facilities

 \rightarrow soon the first stellar explosions with all reaction rates based on experimental information

Classical novae are $\gamma\text{-}\mathrm{ray}$ emitters and dust producers

- ${}^{30}\mathsf{P}(\mathsf{p},\gamma){}^{31}\mathsf{S}$: paternity of novae grains
- ${}^{25}AI(p,\gamma){}^{26}Si$: contribution to galactic ${}^{26}AI$
- ${}^{18}F(p,\alpha){}^{15}O: \gamma$ -ray emission $\leq 511 \text{ keV}$

γ -ray observations

- Access to isotopic abundances
- Explosion mechanism
- Novae rate
- Properties of ejected envelope (T_{1/2}(¹⁸F) ≈2h)

¹⁸F yield depends crucially on the uncertain ${}^{18}F(p,\alpha){}^{15}O$ reaction

¹⁸F(p, α)¹⁵O astrophysical S-factor

Interference effects in Gamow peak

- $3/2^+$ resonances: "8, 38keV" and 665 keV
- 1/2⁺ resonances: sub-threshold + 1.45 MeV

Sub-threshold 1/2⁺ state?

Experimental set-up @ ALTO

- The ¹⁹F(³He,t)¹⁹Ne* charge exchange reaction has already shown to be very little selective in populating ¹⁹Ne excited states.
 - \rightarrow Split-Pole spectrometer
- Coincidence measurement, ¹⁹Ne states decay via α /p emission.
 - \rightarrow charged particle detection array (DSSSD)

Not compatible with 1/2+ (isotropy)

Would indicate high spin or multiplet

In agreement with $J^{\Pi} = 3/2$ -

Angular correlations (t + α)

 $f(\theta)\delta\theta$

Angular Distribution for E = 6014 keV

 χ^2 (/n.d.f.)

Legendre polynomial governed by J^{π} Jπ k max 1/2 +0 2 1/2-2 3/2+ 3/2-4 5/2+ 4 5/2-6 6 7/2+8 7/2-

X-ray bursts nucleosynthesis

The GANIL facility

Grand Accélérateur National d'Ions Lourds

Courtesy: B. Bastin

The ¹⁵O(α, γ)¹⁹Ne reaction

Present status

- Gamow window: 0.5 2 MeV (0.5 1.5 GK)
- 4.033 MeV state dominates up to 1 GK

•
$$N_A < \sigma v > \propto (2J_R + 1) \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma_{tot}} e^{-E_R/k_B T}$$

- E_{p} , J^{π} : known
- $\Gamma_{tot} = \Gamma_{\gamma} \alpha \ 1/\tau \text{ with } \tau = 6.9 \text{ (15) fs } \text{Mythili+ (2008) PRC}$

Missing spectroscopic information: Γ_{α} in ¹⁹Ne

Alpha-transfer reaction: ¹⁵O(⁶Li,dγ)¹⁹Ne_{4.033} in inverse kinematics

- Intense ¹⁵O RIB ~ 10⁷ pps @ 4.7 MeV/u • State of the art detection system Diget+ exp. accepted VAMOS magnetic spectrometer
 - \rightarrow reaction channel identification (¹⁹Ne)
 - AGATA γ-ray spectrometer
 - \rightarrow identification of the 4.033 MeV state
 - MUGAST charged particle array
 - → angular distribution measurement

Massive stars

- Determines C/O abundance in stars
- Impact on the stellar core sizes (Fe, Si, O)
 - Consequence on supernovae explosions
 - Nature of compact remnant formed

Advanced burning stages:

The ¹²C+¹²C fusion reaction

see S. Courtin's talk

Weak s-process: production of nuclides up to $A \sim 90$

- Small abundance uncertainty (~ 30 %) for most of the elements → 10 influencial reactions identified (above Fe)
- Most important reactions:
 - ${}^{22}Ne(\alpha,n){}^{25}Mg \& {}^{22}Ne(\alpha,\gamma){}^{26}Mg$
 - \rightarrow neutron source
 - ¹⁷O(α,n)²⁰Ne & ¹⁷O(α,γ)²¹Ne
 - → neutron recycling in low Z rotating stars from the ${}^{16}O(n,\gamma){}^{17}O$ neutron poison reaction?

The ²²Ne + α reactions

Present status

- Negative Q-value: 478 keV
- Gamow window: 600 ± 150 keV (central He burning)
- Direct measurement down to $n+{}^{25}Mg$ threshold \rightarrow BUT only upper limit below $E_{R} = 702$ keV resonance
- ²²Ne + α reaction rates rely on spectroscopic properties of ²⁶Mg states
 - \rightarrow BUT inconsistent number of states, J $^{\Pi}$, $\Gamma_{\!\alpha}$

(see Longland+ (2012) PRC for a review)

Recent & future indirect studies

Very high resolution measurement (Q3D @ MLL)

Confirmation of suggested states above α+²²Ne threshold
 New ²⁶Mg states observed above n+²⁵Mg threshold: nature?

- 10^{2} $^{22}Ne(\alpha, n)^{25}Mq$ 10Б Ч **Vield** [arb. units] Gamow 10^{-1} (2001)window 10^{-2} Harms et al Jaeger+ 10^{-3} 10^{-4} 10^{-5} □ This work Drotleff et al. Others 10^{-6} 0.9 1.1 1.2 1.3 1.4 0.6 0.7 0.8 1.0Energy E_{α} [MeV]
 - Determination of $\Gamma_{\alpha}({}^{26}Mg)$ $\rightarrow {}^{22}Ne({}^{7}Li,t){}^{26}Mg @ ALTO$

Development of a gas cell (see De Oliveira, PhD thesis)

Globular clusters & elemental anomalies

It is now commonly accepted that globular clusters (GC) are made of multiple generations implying several episodes of star formation

- Abundance anticorrelation C-N, O-Na, Mg-Al
- Observed in red giant stars where temperature is too low to alter abundances
- Observations reproduced if 1st generation of star burns hydrogen at ~ 75 MK and nucleosynthetic products are mixed with pristine GC gas Prantzos+ (2007) A&A, (2017) A&A

Nature of 1^{st} generation of stars? AGB, FRMS, ...

(see Charbonnel (2016) EAS Pub. Ser. 80 for a review)

Case of NGC 2419

Observation of Mg-K anticorrelation

Case of NGC 2808

- Observation of K-O anticorrelation
- Observation of K-Na correlation

Need for higher temperatures ~ 180 MK

Iliadis+ (2016) ApJ, Prantzos+ (2017) A&A

Sensitivity of the T-p locus to reaction rates

- Few reactions:
 - ^{37,38}Ar(p,γ)^{38,39}K
 - ³⁹K(p,γ)⁴⁰Ca
 - ³⁰Si(p,γ)³¹P

Dermigny+ (2016) ApJ

The ³⁰Si(p,γ)³¹P case

Direct measurement of the strength of the E = 418 keV resonance

- Recoil mass separator: DRAGON
- Inverse kinematic (³⁰Si beam ~ 10⁹ pps)
- "thick" H₂ windowless gas target (8 Torr)
- Estimated yield per incident ion ~ 10^{-10} \rightarrow 30 coincident events / h
- Raw suppresion factor (p, γ) ~ 10⁸ 10¹³

- Temperature range: 100 200 MK
- Most uncertain resonance: $E_{R} = 418 \text{ keV} (J^{\pi} \text{ unknown})$
- Reaction rate for narrow resonance $N_A < \sigma v > \propto (\omega \gamma) e^{-E_R/k_B T}$

Summary

- Major nuclear reactions having strong impact on energetics and nucleosynthsesis of astrophysical sites/processes are identified
- Recent detailed sensitivity studies (*s*-, *r*-, *p*-process) to identify influencial reactions and possible overlooked reactions so far
- One of the key ingredient is the thermonuclear reaction rate
- Crucial to give statistical meaningful reaction rates uncertainties
- Cross section is the key nuclear ingredient
- Two experimental approaches:
 - Direct measurements (very low cross section): σ , $\omega\gamma$
 - Indirect measurements (higher cross section but model dependent): E_{χ} , J^{π} , Γ_{i} , Γ_{tot}
- Many nuclides are radioactive
 - \rightarrow development of challenging radioactive ion beams

