SciBooNE

L.Ludovici – INFN Roma @ GDR neutrino, LPNHE Paris April 27th-28th, 2009

Low (~1GeV) v Cross-Sections

Current phenomenological models are not constrained by experimental data with enough precision for the next generation oscillation experiments

Need to improve our understanding of low energy v-Nucleus interactions

Low energy neutrino cross-section open issues

CC Quasi-Elastic Scattering

 $-M_A$

- Q² distribution
- Low Q² region

Single π production

- M_A , Q^2 distribution, low Q^2 region
- Coherent π production (CC vs NC)
- π° momentum

Low energy v_e (not \overline{v}_e) MiniBooNE excess (?)

 $\label{eq:Classical} \begin{array}{l} \mathsf{CC1}\pi\to\mathsf{background}\ to\ \nu_\mu\ disappearance\\ \mathsf{NC}\pi^o\to\mathsf{background}\ to\ \nu_\mu\to\nu_e\ searches \end{array}$

LBL Near-Far Strategy

LBL Near-Far Strategy

v interaction MC

Measure # ν , P_{μ} , θ_{μ} ,... ($\rightarrow E_{\nu}^{rec}$)

Near Detector

Experimental Data

Far Detector

Measure # ν , P_{μ} , θ_{μ} ,... ($\rightarrow E_{\nu}^{rec}$)

Oscillation Fit sin²2 θ , Δm^2

 $\Phi_{ND}(Ev)$ we cross-sections $\Phi_{ND}(Ev)$ we cross-sections Far/Near Flux Ratio:- beam MC
- beam MC

Measure:

Expected $\#\nu$, E_{ν}^{rec} w/o oscillation

SciBooNE: why ?

Precise σ measurements CC-QE $CC-coherent \pi$ $CC-1\pi$ $NC-\pi^{0}$ Similar neutrino energy as T2K (normalized to areas) 1 1 1 1 1 0.750.5

Anti-neutrino σ measurements

CC-QE CC-coherent π

Poor experimental data

Measurements joint with MiniBooNE

Flux x σ measurement (WS, v_{μ} disapp.,..) Beam v_{e} contamination

Neutrino Interaction MC (NEUT) CC quasi-elastic (CCQE)

Llewellyn Smith, Smith-Moniz with $M_A = 1.2 \text{GeV/c}^2$

Fermi gas model with $P_F=217MeV/c$, $E_B=27MeV$ (Carbon)

CC (resonance) single π (CC1 π)

Rein-Seghal(2007), $M_A = 1.2 \text{GeV/c}^2$

DIS

GRV98 PDF Bodek-Yang corrections

CC coherent

Rein-Sehgal(2006), $M_A = 1.0 \text{GeV/c}^{2}$

Neutral Currents

Nuclear effects

SciBooNE: how ?

After K2K end of run (Nov. 2004), where available at KEK SciBar (a fully active tracker and neutrino target) and EC (a lead and fibers "spaghetti" calorimeter adding longitudinal energy containment for electron and π°).

Since installation in K2K (Oct. 2003), 2.2 10¹⁹ PoTs were taken, producing results on neutrino cross-section (no anti-nu).

A new experimental campaign to measure (anti-)neutrino crosssections was possible with the addition of a downstream muon detector and the availability of a neutrino beam.

The Booster Neutrino Beam at Fermilab could provide 2 10²⁰ PoTs, half in neutrino and half in anti-neutrino mode.

End of 2005 \rightarrow Letter of Intent to FNAL PAC.

SciBooNE: where ?

FNAL Booster Neutrino Beam 1÷2 10²⁰ PoT/year

SciBooNE at Fermilab

Booster Proton accelerator

- 8 GeV protons sent to target

Target Hall

- Beryllium target: 71cm long 1cm diameter
- Resultant mesons focused with magnetic horn
- Reversible horn polarity

50m decay volume

- Mesons decay to $\mu \And \nu_{\mu}$
- Short decay pipe minimises $\mu \rightarrow v_e decay$

SciBooNE located 50m from Absorber

MRD (SciBooNE) 4/23/07 SciBooNE's data run is complete!

Last Run 8/18/2008

SciBooNE detector

SciBar

- scintillator tracking detector
- 14,336 scintillator bars (15 tons)
- Neutrino target
- detect all charged particles
- p/π separation
 using dE/dx

Built for K2K

Muon Range Detector (MRD)

- 12 2"-thick steel
 - + scintillator planes
- measure muon momentum with range up to 1.2 GeV/c

Built for SciBooNE with parts recycled at FNAL

Electron Catcher (EC)

- Lead+Fibers "spaghetti" calorimeter
- 2 planes, horizontal+vertical (11 Xo)
- \bullet PID and containment for π° and ν_e

Built for K2K re-cycling modules originally constructed for CHORUS

The "Green" Experiment

Fermilab Today

Monday, April 7, 2008

SciBooNE wins DOE-wide award for pollution prevention

Camillo Mariani (top) and Lucio Ludovici (middle), both from University of Rome, La Sapienza, and Chris Richardson and John Cornele, both of Fermilab, install re-used electromagnetic calorimeter modules into an element of the SciBooNE experiment.

The SciBooNE experiment, which is tucked away in a small cement building no larger than a commercial elevator shaft, recently stood out in the national spotlight. Federal officials recently named SciBooNE a recipient of a DOE-wide Pollution Prevention Star (P2 Star) Award for its reuse of existing materials.

Hardware re-cycling reduced the experiment from 4.5 to 1.2 M\$

DOE-wide Pollution Prevention Star (P2 Star) Award

SciBooNE Data Taking

Started June 2007

Ended Aug. 18th, 2008

Collected for analysis 2.52E20 PoT:

Neutrino data 0.99E20 PoT Anti-neutrino data 1.53E20 PoT

Booster Neutrino Beam (BNB)

Expected neutrino spectrum at SciBooNE (neutrino mode)

- mean neutrino energy:
 <Ev> ~0.7 GeV
- 93% pure νμ beam
 νμ (6.4%)
 νe + νe (0.6%)
- the anti-neutrino beam is obtained by reversing the horn polarity

Event Display

Real SciBooNE Data

νμ CC-QE candidate (νμ + n → μ + p)

anti-v μ CC-QE candidate (v μ + p $\rightarrow \mu$ + n)

SciBooNE Analysis Topics

CC-coherent pion Today Flux measurement Joint SciBooNE/MiniBooNE oscillation analysis CC Quasi Elastic CC $1\pi^+$ NC π° production CC π° production NC elastic Beam v_e spectrum

Excellent training for a new generation of neutrino physicists !

Coherent pion production

Scaled to CC coherent on Carbon assuming:

- A^{2/3} dependence
- $\sigma(CC)=2\sigma(NC)$
- $\sigma(\nu\mu)$ = $\sigma(\overline{\nu}\mu)$

CC coherent π^+

K2K observed a large suppression of CC pion coherent production At <En>=1.3 GeV σ (CC-coherent)/ σ (CC) < 0.6 10⁻² at 90%CL K2K Coll., PRL 95:252301 (2005)

CC and NC coherent pion

CC coherent π + (K2K) Phys.Rev.Lett. 95,252301 (2005)

No evidence of CC coherent pion production at <Ev>=1.3 GeV $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ <0.60x10 $_{2}$ (90%CL) (corresponding to 23% of the MC prediction) NC coherent π° (MiniBooNE) Phys.Lett. B664,41 (2008)

First observation of NC coherent pion production at Ev<2GeV 19.5% of π° coherent over π° all (65% of the MC prediction)

CC coherent: event samples

1. Number of tracks

Search for tracks close to the vertex (R<10cm)

2. Particle ID

Particle ID using dE/dx in SciBar

Muon Confidence Level (MuCL)

MuCL >0.05 → muon-like <0.05 → proton-like

> Mis-ID probability Muon: 1.1% Proton: 12%

2. Particle ID (cont'd)

 p/π separation with MuCL for 2nd track in 2-tracks events

Vertex activity

Low energy protons are detected as a large energy deposition around the vertex

MC tuning

MC distributions of reconstructed Q² for different sub-samples are simultaneously fitted to data to constrain systematic uncertainties due to:

- detector response
- nuclear effects
- neutrino interaction models
- neutrino energy spectrum

Q² reconstruction assuming CCQE (v+n \rightarrow µ+p) interaction

$$E_{v}^{rec} = \frac{1}{2} \frac{(m_{p}^{2} - m_{\mu}^{2}) - (m_{n} - V)^{2} + 2E_{\mu}(m_{n} - V)}{(m_{n} - V) - E_{\mu} + p_{\mu} \cos \theta_{\mu}}$$

$$Q_{rec}^2 = 2E_v^{rec} (E_\mu - p_\mu \cos\theta_\mu) - m_\mu^2$$

MC tuning parameters

: MRD stopped sample normalization Rnorm : CC resonant pion cross section factor R_{res} : Other nonQE (mainly DIS) cross section factor Rother : Migration between 2track / 1track samples R_{2trk}/1trk : Migration between μ +p / μ + π samples $R_{p/\pi}$: Migration between low/high vertex activity samples R_{act} : Muon momentum scale R_{pscale} $E_{lo} = \kappa (\sqrt{p_F^2 + m_p^2 - \omega + E_B})$ Kappa : Pauli-suppression for CCQE k>1, Elo lowest integration bound $\chi^2 = \chi^2_{\rm dist} + \chi^2_{\rm sys}$ on initial nucleon energy $\chi_{\text{dist}}^2 = 2\sum_{i=j} \left(N_{ij}^{\text{exp}} - N_{ij}^{\text{obs}} + N_{ij}^{\text{obs}} \times \ln \frac{N_{ij}^{\text{obs}}}{N_{ij}^{\text{exp}}} \right).$ Covariance R_{res} R_{2trk/1trk} $\chi^2_{\rm sys} = (P_{sys} - P_0)V^{-1}(P_{sys} - P_0)$ $\mathsf{R}_{\mathsf{p}/\pi}$ R_{pscale} rix $V = \begin{pmatrix} (0.20)^2 & -(0.09)^2 & +(0.10)^2 \\ -(0.09)^2 & (0.09)^2 & -(0.07)^2 \\ +(0.10)^2 & -(0.07)^2 & (0.15)^2 \\ 0 & 0 & 0 \end{pmatrix}$ matrix 0 $P_{sys} = \begin{pmatrix} R_{2\text{trk}/1\text{trk}} \\ R_{p/\pi} \\ D \end{pmatrix} \quad , \quad P_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ $(0.02)^2$

Fitting parameters (cont'd)

MC tuning fit result

Parameter	Value	Error
Rnorm	1.103	0.029
R2trk/1trk	0.865	0.035
$R_{p/\pi}$	0.899	0.038
Ract	0.983	0.055
Rpscale	1.033	0.002
Rres	1.211	0.133
Rother	1.270	0.148
Parameter	Value	Error

Reconstructed Q² distributions after fit

1-track

low Q² region in μ+p events is excluded from fitting

μ + π high activity

μ + π low activity

CC coherent π signal region is excluded from fitting

Before fit : $\chi_2/ndf = 473/75 = 6.31$ After fit : $\chi_2/ndf = 117/67 = 1.75$

Data excess in μ +p sample

Features of excess events

- proton candidate goes at large angle
- additional activity around the vertex

Candidate

ν

CC resonant pion events in which the pion is absorbed in the target nucleus

In MC such events are reconstructed As 1-track events

It is not expected to affect CC coherent pion measurement

π

Coherent pion kinematical cuts

1. CC QE rejection:

2. CC resonant π rejection:

 $\Delta \theta_{p} > 20^{\circ}$

$$\theta_{\pi}$$
 < 90°

degrees DATA CC coherent π Entries / 5 CC resonant π Other CC QE 50 **0**0 20 60 80 100 160 180 40 120 140 $\Delta \theta_{\rm p}$ (degrees)

μ + π low activity

Coherent pion kinematical cuts

1. CC QE rejection:

2. CC resonant π rejection:

 $\Delta \theta_{p} > 20^{\circ}$

θ_π< 90°

Event with a forward-going pion candidate are selected

μ + π low activity

CC coherent pion sample Q²<0.1 (GeV/c)²

MRD stopped sample <Ev>= 1.1 GeV

MRD penetrated sample <Ev>= 2.2 GeV

247events selected BG expectation: 228 ± 12 events

57events selected BG expectation 40 ± 2.2 events

$\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ cross section ratio

Measure $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ cross section ratio in order to reduce sytematic from neutrino flux uncertainty

CC inclusive samples are chosen so that they cover similar neutrino energy range as coherent π samples

Results

MRD stopped sample <ev>= 1.1 GeV</ev>	$\sigma(\text{CC coherent }\pi) / \sigma(\text{CC}) = (0.16 \pm 0.17(\text{ stat })^{+0.30}_{-0.27}(\text{ sys })) \times 10^{-2}$
MRD penetrated sample <ev>= 2.2 GeV</ev>	$\sigma(\text{CC coherent }\pi) / \sigma(\text{CC}) = (0.68 \pm 0.32(\text{ stat })^{+0.39}_{-0.25}(\text{ sys })) \times 10^{-2}$
No evidence of CC coh	erent pion production is found
<u>90% CL upper limit</u> $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$	< 0.67×10 ⁻² for <ev>=1.1 GeV < 1.36×10⁻² <ev>=2.2 GeV</ev></ev>
arXiv:(0811.0369, Phys.Rev. D78:112004 (2008)

consistent with K2K result $\sigma(CC \text{ coherent } \pi)/\sigma(CC) < 0.60 \times 10^{-2}$ for <Ev>=1.3 GeV

Results

Upper limits on $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ cross section ratios are converted to upper limits on absolute cross sections by using $\sigma(CC)$ predicted by MC simulation

Systematic errors

	MRD stopped	MRD penetrated
	Error (x10 ⁻²)	Error (x10 ⁻²)
Detector response	+0.10 / -0.18	+0.18 / -0.18
Nuclear effect	+0.20/ -0.07	+0.19 / -0.09
Neutrino interaction model	+0.17 / -0.04	+0.08 / -0.04
Neutrino beam	+0.07 / -0.11	+0.27/-0.13
Event selection	+0.07 / -0.14	+0.06 / -0.05
	MRD stopped	MRD penetrated
	Error (x10 ⁻²)	Error (x10 ⁻²)

Outlook for CC coherent

E.Hernandez et al, arXiv:0903.5285

Our data and recent theoretical works suggest kinematics of coherent pion different from Rein-Seghal: pion less energetic and more peaked forward.

Same effect is observed in a preliminary study of coherent production in our anti-neutrino data.

Implications for CC π coherent (SciBooNE) vs NC π coherent (MiniBooNE)

Conclusions & Outlook

- SciBooNE data taking finished successfully
- First result published (Phys.Rev. D78:112004, 2008)
 - no evidence for coherent pion production in neutrino CC interactions
 - coherent pion kinematic different from existing models ?
- Many cross-section measurements on going
 - CC-QE, CC-1 π , NC-1 π , NC-elastic
- Neutrino flux measurement (compare with MiniBooNE)
 - absolute cross-section measurements
 - flux prediction for MiniBooNE (a.k.a. joint oscillation analysis)

Anti-neutrino cross-sections also coming soon