La physique des neutrinos

Claudio Giganti

LPNHE Paris

Journée de Physique de la SFP 22/11/2018

Neutrinos in the SM

Neutrinos are standard model particles → neutral cousin of the electron and of the other charged leptons

$$e \ CC \ v_e \ v_e \ CC \ v_e \ v_$$

They interact only through weak interactions → Neutral current or Charged current

In the Standard Model neutrinos are massless particles → current limit on the sum of the neutrino masses ~I eV → order of magnitudes lighter than the other fermions

Discovery of ν **oscillations**

Neutrino oscillations

*****First introduced by Bruno Pontecorvo in 1957

Neutrinos are produced in flavor eigenstates (ν_μ, ν_e, ν_τ) that are linear combination of mass eigenstates (ν₁, ν₂, ν₃)

***Neutrino propagate as mass eigenstates**

At the detection a flavor eigenstate is detected → it can be different from the one that was produced

Neutrino oscillation implies massive neutrinos

 $P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$

Neutrino oscillations

PMNS matrix

6

From M. Messier @ NNN18 Data based on INSPIRES search "find ti Neutrino and date 2000", eg.

Artificial sources of neutrinos

***Oscillations were discovered with solar and and atmospheric neutrinos**

Great sources of neutrinos → they come for free, just need to build a detector

\Rightarrow Ideal for discoveries (span different ranges of Δ m2)

 \Rightarrow Cannot be tuned \rightarrow not the best sources for precision measurements

***Reactors** \rightarrow reactor spectrum is fixed but the distance can be tuned (KamLAND for θ_{12} , DB/DC/RENO for θ_{13} , Juno for mass ordering)

*****Accelerators \rightarrow can tune energy and distance

***** Well defined L/E \rightarrow maximize oscillation probability (knowing Δ m2)

* Sensitive to 5 oscillation parameters (θ_{23} , θ_{13} , Δm^2_{23} , δ_{CP} , and mass ordering)

***** Can produce beam of $\nu\mu$ of $\bar{\nu}\mu \rightarrow$ study CP violation

$$P(\nu_{\mu} \rightarrow \nu_{\mathbf{x}}) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$$

Open questions

- Still many open questions related to neutrino oscillations → "guaranteed" measurements
- *****But we also don't know the nature of neutrinos (Dirac or Majorana) $\rightarrow 0\nu\beta\beta$ experiments
- Absolute mass of neutrinos → Katrin, Project-8, Cosmology
- Multi-messenger astronomy with neutrinos is starting now

Reactor experiments

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\Delta m^2_{12} \sim 8 \times 10^{-5} \text{ eV}^2 \qquad \Delta m^2_{13} \sim 2.5 \times 10^{-3} \text{ eV}^2$$

Max Posc → sin²(1.27*Δm²*L[km])/E[GeV]) =1 sin²(1.27*Δm²*L[km])/E[GeV]) ~ π/2 *Reactor antineutrino spectrum ~ 4 MeV *Δm²₁₂, θ₁₂ → distance of 200 km (KamLAND) *Δm²₁₃, θ₁₃ → distance of ~1 km (Daya Bay, RENO, Double Chooz) $\overline{\nu_{e}} + p \rightarrow e^{+} + n$

KamLAND

Measurement of θ_{13}

JUNO

***20 kton Liquid Scintillator detector**

☆Installed at 53 km from nuclear reactor in China ("solar" oscillations) → very precise measurement of Δm^2_{21} and $\sin^2\theta_{12}$

*~3σ sensitivity to the mass ordering → if energy resolution of 3% is achieved

	$\Delta m^2_{_{21}}$	sin²θ ₁₂	Δm² ₃₁	sin²θ ₁₃
Dominant experiment	KamLAND	SNO	T2K & NOvA /Daya Bay	Daya Bay
Individual 1o	2.4%	6.7%	3.2%/3.5%	4.0%
Global 1σ *	2.2%	3.9%	1.2%	3.4%
JUNO expected 1 _o	0.6%	0.7%	0.4%	~15%

12

Accelerator experiments

L = 810 km $E\nu \sim 2 \text{ GeV}$

Neutrino beams

T2K flux errors ~ 5%

*Neutrino beams produced by striking a target with protons and then $\pi \rightarrow \mu$ + ν_{μ}

Main uncertainty → hadronproduction cross-section

*Constrained with NA61/SHINE experiment at CERN

Reduce flux uncertainties from ~25% to ~10% (5% expected very soon!)

NA61/SHINE measurements

Near Detectors

GeV

ν_{μ} disappearance: θ_{23} , Δm^{2}_{23}

Dominated by LBL experiments

All data compatible with sin²(θ₂₃)=0.5 → maximal mixing

v_e appearance: CP violation, θ_{23} octant, mass ordering

T2K almost no MH —> ~ clean measurement of CPV

NOVA sensitive to MH and CPV but with some degeneracies

v_e appearance: θ_{13} , δ_{CP}

	Data	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =+π/2	δ _{СР} =π
ν-mode e-like	75	73.8	61.6	50.0	62.2
ν-mode e- like+1π	15	6.9	6.0	4.9	5.8
$\bar{\nu}$ -mode e-like	9	11.8	13.4	14.9	13.2

- T2K alone and T2K+reactor both prefer values of δ_{CP}~-π/2
- * Normal ordering is also favoured
- CP conserving values are excluded at >2 σ when reactor θ₁₃ measurements are included

T2K/NOvA comparison

- Currently we both prefer normal ordering
- * Preference for maximal CP violation in T2K not confirmed by NOvA
- * More statistics is needed for both experiments!
- * Plan to have combined T2K/NOvA Oscillation Analysis in 2022

T2K phase II

- T2K was originally approved to collect 7.8x10²¹ pot
 - Driven by sensitivity to θ₁₃
- Proposal for an extended run
 - ***** T2K-II \rightarrow 20x10²¹ pot
- Upgrade the Main Ring power supply to reach 1.3 MW operations

 v_e : 460 events ± 20% (δ_{CP} and ordering) v_e : 130 events ± 13% (δ_{CP} and ordering)

- * >3σ measurement of CP violation (if δ_{CP} close to - $\pi/2$)
- Need to reduce systematics to ~4% (<3% from ND280)</p>

Near Detector upgrade

*T2K French groups heavily involved in the T2K Near Det. Nupgrade → to be installed in 2021

*****Super-FGD (10⁶ 1cm³ cubes) + horizontal TPC with resistive MicroMegas

*****Expect to reduce systematics errors by ~30%

No time to cover it today but all LBL experiments have also a large program of neutrino cross-section measurements → ND280 upgrade will contribute!

Next generation: Hyper-K

Access Tunnel

187 kton

40,000 PMTs

Plug Manhole

40 m

Diameter 74m

Height 78m

CEA+IN2P3

Night

MEX

HYPER-KAMIOKANDE EXPERIMENT TO BEGIN CONSTRUCTION IN APRIL 2020

Posted on SEPTEMBER 19, 2018 5:01 PM by ADMIN

Last week at the 7th Hyper-Kamiokande proto-collaboration meeting, a statement was issued by the University of Tokyo recognizing the significant scientific discoveries which the planned Hyper-Kamiokande experiment would enable.

It states that, based on these exciting prospects, the University of Tokyo will ensure that construction of the experiment will begin in 2020. Hyper-Kamiokande now moves from planning to a real experiment.

The Hyper-Kamiokande proto-collaboration welcomes this exciting endorsement of the project and the boost it will give to increasing even further the international contributions and participation in the experiment. Introducing the statement, Professor Takaaki Kajita, Director of the Institute for Cosmic Ray Research at the University of Tokyo and 2015 Nobel Laureate in Physics, pointed out that the Japanese funding agency MEXT has included seed funding for Hyper-Kamiokande in its JFY 2019 budget request. He illustrated with many examples that it is standard in Japan for large projects to begin with a year of seed funding, and said that in any case the University of Tokyo commitment meant that Hyper-Kamiokande construction will begin in April 2020.

The Hyper-Kamiokande Proto-Collaboration will now work to finalize designs, and is very open to more international partners to join in this far-reaching new experiment.

***~10 times bigger than SK**

*****Upgraded beam from J-PARC (1.3 MW)

*Instrumented with 40k PMTs (R&D on-going)

*****Approved to start construction in 2020, first data in 2026

Next generation: DUNE

CEA+IN2P3

≯*v* beam produced at Fermilab

- Far detector at Homestake → 4*10 kton LAr TPCs
- Possible to have single and dual phases TPCs

*****Expect to begin in 2026

*~600 ton prototypes for SP and DP being built at CERN → TDR expected in 2019

ProtoDUNE @ CERN

Non-PMNS physics goals

DUNE and Hyper-K will have unprecedented sensitivies to proton decay, SN neutrinos, solar neutrinos, ...

ν from SuperNovae in DUNE

CP violation and mass ordering

Thanks to the longer baseline DUNE will have a better sensitivity to the Mass Ordering (>5σ)

Comparable sensitivities to CP violation

Prospects for mass ordering (<2025)

While CP violation can only be determined with LBL experiments different techniques can be used for determining the mass ordering

NOvA 3 σ sensitivity by 2020 if $\delta_{CP} \sim -\pi/2$ with LBL experiments

ORCA and PINGU >3 σ sensitivity to mass ordering in ~2024 if θ_{23} >45° with atmospheric neutrinos

JUNO will also have 3-4 σ sensitivity to MO by 2024 (depending on the achieved energy resolution) ₂₇

Sterile neutrinos

*2 "anomalies" point to the existence of additional neutrino families (sterile neutrinos) with masses around ~1 eV

*****Deficit of $\overline{\nu}_{e}$ flux from reactors

* v_e and \overline{v}_e excesses in short baseline experiment (LSND and MiniBooNE)

Reactor anomaly

*****Several experiments testing the reactor anomaly

6

*****Best-fit point already excluded

*****French groups involved in SOLID and STEREO

Expect new results soon

Short baseline program at FNAL

*****3 LAr detectors at different baselines

*****3-5σ resolution of the LSND/MiniBooNE anomalies in 5 years

Summary

In the last 20 years there have been huge progresses in neutrino oscillations physics

*The next 10 years will answer many of the remaining outstanding questions with a well defined accelerator-based program (T2K-II \rightarrow Hyper-K and NO ν A \rightarrow DUNE)

***** Is CP violated?

*****Which is the mass ordering?

***** Is θ_{23} maximal?

***** Sterile neutrinos?

* The measurement of the neutrino mass and their nature (Dirac/ Majorana) will also actively pursued in the coming years

*****Very interesting physics in front of us!