

DES Y1 constraints on extended cosmological models from lensing and clustering

Agnès Ferté

Jet Propulsion Laboratory California Institute of Technology

© 2018 California Institute of Technology

Measure position and shape of galaxies:

- Shape x Shape = shear due to matter distribution
- Shape x Position = galaxy-galaxy lensing, galaxies mass
- Position x Position = clustering of matter

wCDM

DES Y1+Planck+BAO+SN

$$w = -1.00^{+0.05}_{-0.04}.$$

From DES collab, PRD 98, 2018

DES Y1 lensing and clustering to answer 4 questions

Work with Lucas Secco, Andresa Campos, Dragan Huterer, Danielle Leonard, Su-Jeong Lee, Jack Elvin-Poole, Scott Dodelson, Jessie Muir, Vivian Miranda, Michael Troxel, ...

- Is the DE equation of state varying with time? \rightarrow w(a) = w₀ + w_a (1-a)
- Is the Universe flat? $\rightarrow \Omega_k$
- How many families of neutrinos? $\rightarrow N_{eff}$

DES Y1 lensing and clustering to answer 4 questions

• Is GR a good theory of gravity on cosmological scales? $\rightarrow \Sigma_0$ and μ_0

$$k^2\Psi = -4\pi Ga^2(1+\mu(a))\rho\delta$$

$$k^2(\Psi+\Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta$$

$$\mu(z)=\mu_0rac{\Omega_\Lambda(z)}{\Omega_\Lambda}\,,~~\Sigma(z)=\Sigma_0rac{\Omega_\Lambda(z)}{\Omega_\Lambda}$$

From Ferté et al, 2018

External data sets

CMB: Planck 2015 TT+lowP+lensing

BAO: 6dfgs, BOSS DR12, mgs

RSD: BOSS DR12

SN: Pantheon

Validation tests

Simulated DES Y1 data vector shifted by a systematic effect:

- Baryonic effects
- Intrinsic alignment
- Non linear bias
- Limber approximation
- Magnification

→ Test that these systematics effects don't produce evidence for extended models.

The case of modified gravity

 Procedure for small scales: throw away 123 data points + use of halofit

 Pipeline comparison: Cosmosis (modified MGCamb) vs Cosmolike.

Results: constraints on extended models

From DES collab, 1810.02499

Results: constraints on extended models

Adding DES significantly improve constraints on Σ_0

From DES collab, 1810.02499

Challenges

- Runtime for parameters estimation: ~70 chains, ~50-100 proc, >48h. For Planck+DES Y1: ~1 week.
- Organisation
- Code comparison
- Varying neutrinos mass
- Scale cuts
- Blinding when dominated by ext data

 Main constraining power of DES Y1 on extended models: modified gravity

No evidence for deviations to ΛCDM

 Setting up the pipeline for DES Y3: more data, more combination of observables, more models.

Curvature	DES Y1	External	DES Y1 + External
Ω_k	$0.163\substack{+0.087\\-0.136}$	$0.0023\substack{+0.0035\\-0.0030}$	$0.0020\substack{+0.0037\\-0.0032}$
Number Rel. Species	DES Y1	External	DES Y1 + External
$N_{ m eff}$	< 5.38	< 3.32	< 3.28
Dynamical dark energy	DES Y1	External	DES Y1 + External
w_0	$-0.69\substack{+0.30\\-0.29}$	$-0.96\substack{+0.10\\-0.08}$	$-0.95\substack{+0.09\\-0.08}$
w_a	$-0.57\substack{+0.93\\-1.11}$	$-0.31\substack{+0.38\\-0.52}$	$-0.28\substack{+0.37\\-0.48}$
w_p	$-0.91\substack{+0.19\\-0.23}$	$-1.02\substack{+0.04\\-0.04}$	$-1.01\substack{+0.04\\-0.04}$
Modified Gravity	DES Y1	External	DES Y1 + External
Σ_0	$0.43\substack{+0.28\\-0.29}$	$0.26\substack{+0.14\\-0.13}$	$0.06\substack{+0.08\\-0.07}$
μ_0		$0.16\substack{+0.43 \\ -0.47}$	$-0.11^{+0.42}_{-0.46}$