

die Kunst

in der Wissenschaft

über

## Tracing the universe with the XMM-XXL survey 2018 cosmological results

Marguerite PIERRE

Service d'Astrophysique du CEA

Colloque Energie Sombre, 24 octobre 2018 IAP

# Outline

- 1. XMM serendipitous cluster surveys
- 2. Principle of the selection function
- 3. Results from DR2 October 2018
- 4. Forward cosmological modelling

## **XMM-XXL**

#### The largest XMM programme to date:

- 6.9 Ms of XMM time covering 2 x 25 deg<sup>2</sup> fields
- ~ 100 collaborators
- 1<sup>st</sup> series of 14 papers published in 2016
- 2<sup>nd</sup> series of 20 papers published in october 2018

Primary goal : cosmology with the 0<z<1 clusters

# Reminder: cosmology with galaxy clusters

- Based on cluster number counts
  - dn/dz
  - dn/dz/dM
- Also on the correlation function
  - If *w* is free, then combining  $dn/dz + \xi$  improves the constraints by a factor of ~ 2 (*Pierre et al 2011*)
- Caveat: we must know how clusters evolve !
  - Encrypted in the scaling relations = mass-observable relations

 Finding and characterizing serendipitous XMM clusters

# XMM



#### The largest ESA telescope 0.1-10 keV (~100-1 Å)

Launched: 1999

## collect and focus X-ray light





#### 3 X-ray telescopes

#### 58 nested mirror shells



#### The XMM PSF as function of off-axis angle









































Photon counting mode. we register:

- Arrival time
- Position ٠
- Energy

#### XXL-N 25 deg<sup>2</sup>





XXL-S 25 deg<sup>2</sup>

23h30 -55d00

within the SPT 100 deg2 Deep Field



0.59 0.88 1.4 2 2.9 3.9 5.2 6.6 8.2



#### XXL clusters of galaxies and their optical counterpart (CFHTLS)



# Why are X-ray especially good?

• The presence of X-ray emitting gas witnesses collapsed structures

- The X-ray properties can be modelled rather easily :
  - Ab initio analytical modelling
  - Hydrodynamical simulations
  - (ad hoc) analytical scaling relations
  - $\rightarrow$  link to cosmology

# 1. Principle of the selection function

# A cluster field



Background image: CFHT, I band

Blue contours: X-ray



#### Exp. time : $10^4$ s









# Not a flux limit !

2 clusters with same flux



detected not detected

~ surface brightness limited

## **Detection rates** from analytical simulations

Class 1 sample : < 5% contamination



Pacaud et al 2006

#### An XMM image (10ks) of an 'empty field'



#### An XMM image (10ks) of an 'empty field'



Working with these data: difficult !

: misleading (Poisson statistics)

: ambitious

... but feasible

## 3. The 2018 DR2 results

# The XXL fields

- Two 25 deg<sup>2</sup> areas
  - CFHTLS W1 : 2h23min -4deg30'
  - BCS/SPT : 23h30min -55deg00'
- With extensive multi- $\lambda$  coverage from UV to radio

# XXL DR 2

- 20 articles in an A&A special issue
- 4 main catalogues
  - 365 clusters
  - 26 000 AGN
  - GMRT (610 MHz) survey in XXL-N
  - ATCA (2.1 GHz) survey in XXL-S
- 3 cosmology papers
- The other papers :
  - Galaxy and AGN properties in clusters
- I'll concentrate on the cluster results

#### The XXL calender

XMM images (7'x7') 0.03 < z <1.9



#### The XXL calender

CFHTLS images (7'x7') 0.03 < z <1.9









# The cluster catalogue release 365 objects

(paper XX : Adami et al 2018)

- Positions (cluster and cD)
- Spectroscopic redshifts
- X-ray fluxes and temperature
- Masses
  - Lensing measurements
  - From our own scaling relations
- 35 superclusters

#### ➔ Visit our cluster DB:

http://xmm-lss.in2p3.fr:8080/xxldb/index.html

## **Cluster mass range**

XXL paper II : 100 brightest clusters Pacaud et al 2106


XLSSC-122

Mantz at al 2014 XXL paper V

z-phot~1.9



#### Redshift confirmation by deep XMM obs.

Mantz et al 2018, XXL paper XVII



# Cluster sample and observables

- Based on the XXL C1 sample of the XXL 2<sup>nd</sup> release (Adami et al. 2018)
- Cosmological constraints from the cluster density in redshift space (dn/dz), restricting to the redshift range [0.05-1.0]:
  - > 178 clusters with measured redshifts
  - > 5 clusters without a measured redshift modeled as a 6.6% incompleteness for z>0.4



 $M_{500} \simeq 5 \ 10^{13} - 3 \ 10^{14}$ 

# Comparison with CMB predictions



Using our best-fit scaling relations

**CMB overestimates the cluster density** 

WMAP9 model : +37%

Planck15 model : + 61%

Results very much comparable to the Planck SZ clusters !

How significant is this discrepancy?

#### Which cosmology do the XXL C1 clusters favour ?

# Flat $\Lambda$ CDM analysis

- We ran MCMC chains based the likelihood of the predicted redshift density.
- Priors on  $\Omega_{\rm b}$  and n<sub>s</sub> included to stabilize the convergence.
- Additional weak prior on h = 0.7 +/- 0.1
- Cosmic variance accounted for as gaussian fluctuations on the total counts



A low value of  $\sigma_8=0.72\pm0.07$  is prefered

 $\sigma_{\!8}$  driven low by the density at z>0.4

Results **comparable with Planck15** clusters but for a **different M**<sub>500</sub> **and z regime** 

# XXL/CMB comparison in Flat $\Lambda$ CDM

- Errors are still larger than the Planck SZ cluster analysis (using only redshift distribution, conservative assumptions on scaling laws and half as many clusters)
- Tension with Planck CMB remains unsignificant at this stage (<0.1 $\sigma$ )



**XXL-C1 + KiDS-450** yield tighter constraints :  $\Omega_m$ =0.31±0.05,  $\sigma_8$ =0.72±0.06

But tensions are similar that for KiDS alone (see Hildebrandt 2017)

Despite the low cluster density, everything seems compatible with Planck CMB results

# wCDM constraints

- For dark energy models (w=Cst), Planck CMB constraints are weaker
- Even with the early analysis, XXL can already improve constraints on w
  - Planck 2015 : w = -1.44 + 0.3
  - Planck + XXL:  $w = -1.02 \pm 0.2$
- Still no significant tension ( $\sim 0.5\sigma$ ), despite best fit offsets
- The combination of clusters and CMB disfavours phantom DE models



XXL paper XXV, Pacaud et al 2108



 $\begin{array}{c} \text{The 3D} \\ \text{cluster-cluster } \xi \end{array}$ 

**Fig. 3.** Redshift-space 2PCF of the C1 XXL clusters at z < 1.5 (black dots) compared to the best-fit model, i.e. the median of the MCMC posterior distribution (black solid line). The shaded area shows the 68% uncertainty on the posterior median. The derived best-fit model correlation length is  $s_0 = 16 \pm 2 h^{-1}$  Mpc.

XXL paper XVI, Marulli et al 2018

# NOW:

# Inventory of the systemactic errors

- Accuracy of the mass calibration
- Average cluster shape ( $\beta = 2/3$ ) (sel. funct.)
- Effect of 'peaked' clusters (sel. funct.)
- Scatter in the scaling relations
- Uncertainties in the theoretical mass function

➔ Will be adressed in the final analysis with the complete cluster sample (~400 objects) along with numerical simulations

# **Cosmos-OWLS simulation**

#### Le Brun, McCarthy et al 2014



## XMM image



# X-ray pipeline output

Cosmo-OWLS simulations, *Le Brun et al 2014* AGN X-ray contribution, *Koulouridis et al, XXL paper XIX* 



7'x7' image centered on a z = 0.95 cluster ;  $M_{500} = 3.5 \ 10^{14}$ M – the black squares are the in-situ simulated AGN

### The 700 deg<sup>2</sup> simulations DM: Aardwark 39 x 25deg<sup>2</sup> fields



#### 5x5 deg<sup>2</sup> emissivity maps: one XXL field Gas painting ad libitum ; here: $\beta$ =2/3 profiles

Valotti et al 2018



# 3. X-ray cluster forward cosmology modelling

# **Cluster cosmology**

• Old route:

Flux, Temp => Mass => dn/dM/z => compare with theory Masses - and <u>scaling relations</u> - must be computed for each tested cosmology

• Quick way:

Work in directly in the observed parameter space

Predicted X-ray colour-magnitude diagrams

Clerc et al 2012, Pierre et al 2017, Valotti et al 2017

Fit simultaneously:

cosmology - cluster physics & evolution - selection effects





## X-ray emission complex



## Raw XMM cluster spectra

• CR in [0.5-2] keV

~ Magnitude

• HR = [1-2]/[0.5-1]

~ Colour



## **The CR-HR distribution**

[1-2] keV / [0.5-1] keV hardness ratio (HR)





# The selected

## X-ray observable cluster parameters

- 1. XMM count-rate in [0.5-2] keV
- 2. XMM 'hardness ratio' : CR[1-2] / CR[0.5-1]
- 3. Apparent size : core radius of the  $\beta$ -profile
- 4. Redshift
- Useful: the selection is expressed in terms of 1+3
- ⇒ We project the predicted [M-z] space into the 4D [CR-HR-Rc-z] space for any cosmology + scaling relations
- ⇒ Fit to the observed 4D diagram

### The M-z plane (10,000 deg<sup>2</sup>) for the selected C1 clusters



# Projection into the 4D observational space



### Easy: introducing error measurements





+ 20% err on all parameters

# Reducing the area



# Comparison with the standard approaches

Fisher analysis *Clerc et al 2012* 



#### Adding redshifts

#### → 4<sup>th</sup> dimension to the diagram



#### Adding redshifts (photo-z are sufficient)

2) CR-HR-dz vs N(M, z)



Processing of 700 deg<sup>2</sup> ~ 900 fake XMM observations (Aardvark simulations)

Valotti et al 2018

- Selection of the C1 clusters
- Construction of te CR-HR-Rc-z diagrams
- Analyses with +/- free parameters
  - MCMC
  - Amoeba
  - Check Fisher analysis

# A few results





# A few results (a)

| ID | Observable combination | Fitted parameters     | < <i>p</i> >               | best-10 | Toy catalogues[x10] | Fisher            |
|----|------------------------|-----------------------|----------------------------|---------|---------------------|-------------------|
|    |                        |                       | MCMC                       | Amoeba  | Amoeba              | analysis          |
| A1 | CR-HR <sub>1</sub>     | $\Omega_m$            | $0.249^{+0.014}_{-0.019}$  | 0.245   | 0.234±0.019         | $0.23 \pm 0.013$  |
|    |                        | $\sigma_8$            | $0.823 \pm 0.014$          | 0.825   | $0.830 \pm 0.018$   | $0.83 \pm 0.012$  |
|    |                        | $x_{c,0}$             | $0.285^{+0.033}_{-0.034}$  | 0.290   | $0.232 \pm 0.024$   | $0.24\pm0.031$    |
|    |                        | <i>w</i> <sub>0</sub> | $-1.117^{+0.212}_{-0.218}$ | -1.037  | $-1.204 \pm 0.296$  | $-1.00\pm0.246$   |
| A2 | $CR-HR_1-r_c$          | $\Omega_m$            | 0.222±0.010                | 0.220   | $0.226 \pm 0.013$   | $0.23 \pm 0.012$  |
|    |                        | $\sigma_8$            | $0.846^{+0.011}_{-0.010}$  | 0.846   | $0.832 \pm 0.015$   | $0.83 \pm 0.011$  |
|    |                        | $x_{c,0}$             | $0.240^{+0.011}_{-0.013}$  | 0.247   | $0.248 \pm 0.014$   | $0.24 \pm 0.017$  |
|    |                        | <i>w</i> <sub>0</sub> | $-1.009^{+0.153}_{-0.144}$ | -0.969  | -0.980±0.198        | $-1.00\pm0.21$    |
| A3 | $z-CR-HR_1-r_c$        | $\Omega_m$            | $0.219 \pm 0.005$          | 0.218   | $0.229 \pm 0.004$   | $0.23 \pm 0.005$  |
|    |                        | $\sigma_8$            | $0.852 \pm 0.009$          | 0.854   | $0.832 \pm 0.009$   | $0.83 \pm 0.009$  |
|    |                        | $x_{c,0}$             | $0.240 \pm 0.003$          | 0.239   | $0.240 \pm 0.003$   | $0.24 \pm 0.003$  |
|    |                        | <i>w</i> <sub>0</sub> | $-0.990^{+0.029}_{-0.027}$ | -0.990  | $-1.041 \pm 0.033$  | $-1.00\pm0.032$   |
| A4 | $CR-HR_1-HR_2-r_c$     | $\Omega_m$            | $0.228^{+0.008}_{-0.009}$  | 0.227   | $0.226 \pm 0.013$   | $0.23 \pm 0.008$  |
|    |                        | $\sigma_8$            | $0.844^{+0.008}_{-0.009}$  | 0.843   | $0.833 \pm 0.012$   | $0.83 \pm 0.010$  |
|    |                        | $x_{c,0}$             | $0.226^{+0.008}_{-0.009}$  | 0.229   | $0.247 \pm 0.012$   | $0.24\pm0.009$    |
|    |                        | $w_0$                 | $-1.166^{+0.148}_{-0.146}$ | -1.121  | $-0.975 \pm 0.195$  | $-1.00 \pm 0.113$ |

**Table 6.** Summary table for the cosmological analysis of the Aardvark C1 CLEAN catalogue over 711 deg<sup>2</sup>. The first column gives the run ID. The second column lists the signal variables used in the fit and the third one, the subset of free parameters. The fourth and fifth columns show the results from the MCMC analysis at the 68% confidence level and from the Amoeba best-10 fit, respectively. The sixth column shows the results obtained by running Amoeba over 10 toy catalogues of 700 deg<sup>2</sup>, for which the mass function is taken to be Tinker's. The last column shows the Fisher analysis forecast for 1 $\sigma$  errors.

# A few results (b)

| Parameter      | MCMC fit          | Amoeba best-10 | Fisher analysis   |
|----------------|-------------------|----------------|-------------------|
| $\Omega_m$     | $0.228 \pm 0.020$ | 0.207          | $0.23 \pm 0.025$  |
| $\sigma_8$     | $0.876 \pm 0.073$ | 0.814          | $0.83 \pm 0.156$  |
| w <sub>0</sub> | -0.981 ±0.053     | -0.940         | $-1.00 \pm 0.065$ |
| $x_c$          | $0.249 \pm 0.016$ | 0.258          | $0.24 \pm 0.034$  |
| $\sigma_{x_c}$ | $0.500 \pm 0.019$ | 0.504          | $0.50 \pm 0.023$  |
| $\alpha_{MT}$  | $1.538 \pm 0.096$ | 1.453          | $1.49 \pm 0.169$  |
| γμτ            | $0.268 \pm 0.136$ | 0.162          | $0.00 \pm 0.244$  |
| $C^{MT}$       | $0.502 \pm 0.140$ | 0.490          | $0.46 \pm 0.297$  |
| $\sigma_{MT}$  | $0.258 \pm 0.133$ | 0.112          | $0.10 \pm 0.206$  |

**Table 7.** Fit results (z–CR-HR- $r_c$ ) over the 711 deg<sup>2</sup> Aardvark C1 CLEAN catalogue when cosmological and cluster physics parameters are let free.

# 4. Summary and conclusion

# X-CLASS

 Extending the XXL methodology to ~ 4200 observations selected in the XMM archive (as of August 2015)

→ ~ 2500 serendipitous clusters



http://xmm-lss.in2p3.fr:8080/xclass/
## Summary

- XXL DR2 : 20 articles; 365 clusters and 26 000 AGN
  6 papers led or co-led by French institutes
- First self-consistent comological analysis of XMM serendipitous clusters
- Already improves the Planck constraints on w
- For the final analysis, we expect a factor of 3 improvement
  - 400 clusters; inclusion of the mass information and of  $\xi$
- Stay tuned for the final release and analysis in 2021 !

## FIN