Clusters in LCDM

Alain Blanchard

From Z. Sakr, S.Ilić, A. Blanchard

Paris, October 25th, 2018

・ロト ・個ト ・モト ・モト

How to use clusters for Cosmology (from clusters abundance)

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

How to use clusters for Cosmology (from clusters abundance)

Recipe

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Chose your cosmological framework (Λ CDM: Ω_m , Ω_b , n_s ,...)

- Chose your cosmological framework (Λ CDM: Ω_m , Ω_b , n_s ,...)
- Have your Boltzmann code ready for it: CMBFAST, CAMB, CLASS, ...

- Chose your cosmological framework (Λ CDM: Ω_m , Ω_b , n_s ,...)
- Have your Boltzmann code ready for it: CMBFAST, CAMB, CLASS, ...

• You can then compute P(k) and $\sigma(m, z)$

- Chose your cosmological framework (Λ CDM: Ω_m , Ω_b , n_s ,...)
- Have your Boltzmann code ready for it: CMBFAST, CAMB, CLASS, ...

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• You can then compute P(k) and $\sigma(m, z)$

Use the magic of (e)Press-Schechter...

- Chose your cosmological framework (Λ CDM: Ω_m , Ω_b , n_s ,...)
- Have your Boltzmann code ready for it: CMBFAST, CAMB, CLASS, ...
- You can then compute P(k) and $\sigma(m, z)$

Use the magic of (e)Press-Schechter...

The mass function follows a scaling law:

$$n(M) = -\frac{\overline{\rho}}{M^2 \sigma(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

A 10

Despali et al. 2015

Going from mass to observables

Alain Blanchard, Paris, 25/10/2018

◆□→ ◆□→ ◆三→ ◆三→ -

æ

Going from mass to observables

• Xray scaling law

$$T_X = A_{T-M} (h M_\Delta)^{2/3} \left(rac{\Omega_m \Delta(z)}{178}
ight)^{1/3} (1+z)$$

・ロト ・四ト ・ヨト ・ヨト

э

Going from mass to observables

• Xray scaling law

$$T_X = A_{T-M} (h M_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta(z)}{178} \right)^{1/3} (1+z)$$

• SZ scaling law
$$S_{\nu}(x, M, z) =$$

1.2mJy $h^{8/3} A_{T-M} f_{\nu}(x) f_B M_{15}^{5/3} \left(\frac{\Omega \Delta(z)}{178} \right)^{1/3} (1+z)/D^2(z)$

・ロト ・四ト ・ヨト ・ヨト

э

Going from mass to observables

• Xray scaling law

$$T_X = A_{T-M} (h M_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta(z)}{178} \right)^{1/3} (1+z)$$

• SZ scaling law
$$S_{\nu}(x, M, z) =$$

 $1.2 \text{mJy } h^{8/3} A_{T-M} f_{\nu}(x) f_B M_{15}^{5/3} \left(\frac{\Omega \Delta(z)}{178} \right)^{1/3} (1+z)/D^2(z)$
 $\propto \left((1-b) M_{15} \right)^{5/3} \left(\frac{\Delta(z)}{178} \right)^{1/3}$

・ロト ・聞ト ・ヨト ・ヨト

э

Going from mass to observables

• Xray scaling law

$$T_X = A_{T-M} (h M_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta(z)}{178} \right)^{1/3} (1+z)$$

• SZ scaling law
$$S_{\nu}(x, M, z) =$$

 $1.2 \text{mJy } h^{8/3} A_{T-M} f_{\nu}(x) f_B M_{15}^{5/3} \left(\frac{\Omega \Delta(z)}{178} \right)^{1/3} (1+z)/D^2(z)$
 $\propto \left((1-b) M_{15} \right)^{5/3} \left(\frac{\Delta(z)}{178} \right)^{1/3}$

 Planck(2013) chose a calibration 1 – b for clusters (plus some priors).

Fitting the X-ray temperature function at $z \sim 0.05$

Ilic, Blanchard & Douspis 2015

Degeneracy on astrophysical parameters

Douspis & Blanchard 2005

The cluster-CMB tension (in Λ CDM)

No sign of systematics between x-ray clusters ($z \sim 0.05$) and SZ clusters ($z \sim 0.25$)

ъ

Going from mass to observables

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Going from mass to observables

Scaling laws

$$T = A_{T-M} (h M_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta(z)}{178} \right)^{1/3} (1+z)$$

٩

$$S_{
u}(x,M,z) \propto ... ((1-b)M_{15})^{5/3}...$$

• Planck(2013) chose a calibration (plus some priors).

Going from mass to observables

Scaling laws

$$T = A_{T-M} (h M_{\Delta})^{2/3} \left(\frac{\Omega_m \Delta(z)}{178} \right)^{1/3} (1+z)$$

٩

$$S_{
u}(x,M,z) \propto ... ((1-b)M_{15})^{5/3}...$$

• Planck(2013) chose a calibration (plus some priors).

• No calibration, no tension...But infer the calibration!

X-ray

・ロト ・ 日 ・ ・ 正 ・

Sakr, Ilic & Blanchard(2018)

X-ray

・ロト ・ 日 ・ ・ 正 ・

Sakr, Ilic & Blanchard(2018) From $\geq 4\sigma$ down to...

X-ray

A D > A D > A D
 A

Sakr, Ilic & Blanchard(2018) From $\geq 4\sigma$ down to...0!

▲□▶ ▲同▶

The "tension" corresponds to a deficit by a factor \sim 3.

The "tension" corresponds to a deficit by a factor \sim 3. SZ: \approx 6 σ

What could be the solution?

Astrophysics

Alain Blanchard, Paris, 25/10/2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Calibration issue.

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Calibration issue.

New physics

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Calibration issue.

New physics

• Massive neutrinos (change P(k), growth rate, ...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Calibration issue.

New physics

• Massive neutrinos (change P(k), growth rate, ...)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 臣 ● のへの

• Modification in the gravitational sector (MG).

Mass function has to be modified (neutrino prescription)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□ ● ● ●

・ロト ・ 日 ・ ・ 日 ・

X-ray Adding BAO (green), adding Lyman α (red), combined (grey)

▲ 御 ▶ → ● 臣

э

▲御→ ▲ 登→

・ロト ・日下・ ・日下

∃ >

・ロト ・日下・ ・日下

ヨート

Massive neutrinos do not seem to help.

Modifying growth rate

X-ray Growth rate with a γ parametrization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modifying growth rate

X-ray Growth rate with a γ parametrization.

3 x 3

Modifying growth rate

X-ray Growth rate with a γ parametrization.

・ロト ・日下・ ・日下

∃ →

Robust correlation between γ and A_{TM} .

Planck CMB calibration versus Planck Clusters calibration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Final comparison (X-ray)

Planck CMB calibration versus Planck Clusters calibration

・ロト ・聞と ・ヨト ・ヨト

3

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Planck cluster calibration if confirmed would favors MG...

X-ray+SZ Growth rate with a γ parametrization.

llic, Sakr & Blanchard(2018?) Free σ_8

X-ray+SZ Growth rate with a γ parametrization.

Ilic, Sakr & Blanchard(2018?) Free γ and free Σm_{ν}

X-ray+SZ Growth rate with a γ parametrization.

llic, Sakr & Blanchard(2018?) Free γ

X-ray+SZ Growth rate with a γ parametrization.

llic, Sakr & Blanchard(2018?) Free Σm_{ν}

X-ray Growth rate with a γ parametrization.

▲ 🗇 🕨 🔺

Ilic, Sakr & Blanchard(2018?) LCDM

< //2 → < 三

▲ 伊 ▶ ▲ 臣

< □ > < 同 > < 回 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

B b

Conclusion : SZ versus X-ray

Alain Blanchard, Paris, 25/10/2018

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Conclusion : SZ versus X-ray

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ -

æ

Conclusion : SZ versus X-ray

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

Alain Blanchard, Paris, 25/10/2018

• Clusters-CMB tension is interesting...

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Clusters-CMB tension is interesting...
Planck ΛCDM would imply large astrophysical systematics.

< □ > < @ > < 注 > < 注 > ... 注

- Clusters-CMB tension is interesting...
- Planck ΛCDM would imply large astrophysical systematics.
- Massive neutrinos are not playing any role on this issue.

- Clusters-CMB tension is interesting...
- Planck ΛCDM would imply large astrophysical systematics.
- Massive neutrinos are not playing any role on this issue.
- A definitive (reliable) calibration of clusters close to Planck's one would be the sign of new physics of the dark sector

- Clusters-CMB tension is interesting...
- Planck ΛCDM would imply large astrophysical systematics.
- Massive neutrinos are not playing any role on this issue.
- A definitive (reliable) calibration of clusters close to Planck's one would be the sign of new physics of the dark sector (MG?)

- Clusters-CMB tension is interesting...
- Planck ΛCDM would imply large astrophysical systematics.
- Massive neutrinos are not playing any role on this issue.
- A definitive (reliable) calibration of clusters close to Planck's one would be the sign of new physics of the dark sector (MG?)

• Not something simple...

- Clusters-CMB tension is interesting...
- Planck ΛCDM would imply large astrophysical systematics.
- Massive neutrinos are not playing any role on this issue.
- A definitive (reliable) calibration of clusters close to Planck's one would be the sign of new physics of the dark sector (MG?)

Thank You

• Not something simple...