



# Testing Gravity with GGL and RSD in CFHT-S82 and CFHTLS

#### Eric Jullo

Aix-Marseille Univ., LAM

In collaboration with

Eric Jullo, Sylvain de la Torre – LAM, Marie-Claude Cousinou, Stephanie Escoffier, Alice Pisani, Anne Ealet – CPPM, Carlo Giocoli, Ben Metcalf –Bologna University, Gustavo Yepes, Francisco Prado – IFT Madrid

Dark Energy Workshop – IAP, Oct 23rd, 2018

### CMASS in Stripe 82 + CFHTLS



### **Redshift distributions**

| Field | # CMASS | SDSS area<br>[deg <sup>2</sup> ] | SDSS field size<br>[deg×deg] | Eff. area<br>[deg <sup>2</sup> ] | # sources $[\times 10^6]$ |
|-------|---------|----------------------------------|------------------------------|----------------------------------|---------------------------|
| S82   | 18,675  | 219.8                            | $87.6 \times 2.51$           | 129.2                            | 2.19                      |
| W1    | 3,924   | 54.14                            | $8.66 \times 6.3$            | 63.8                             | 1.66                      |
| W3    | 3,694   | 41.91                            | $11.5 \times 6.6$            | 44.2                             | 1.26                      |
| W4    | 1,746   | 22.16                            | 5.7 	imes 5.61               | 23.3                             | 0.62                      |



## Perturbation around FLRW

We assume a perturbed FLRW metric in Newtonian Gauge  $ds^{2} = -a(\tau)^{2}[1+2\Psi]d\tau^{2} + a(\tau)^{2}[1-2\Phi]d\mathbf{x}^{2}$ 

with  $\Psi$  and  $\Phi$  the 2 Bardeen gravitational potentials

Assuming no anisotropic stress,  $\Psi = -\Phi$ 

Lensing is sensitive to  $\nabla^2 \Phi$ 

Assuming Poisson equation we have  $\nabla^2 \Phi = 3/2\Omega_{m0}H_0^2a^{-1}\delta_m$ 

### **Redshift Space Distortion Clustering**

In the linear regime the divergence of the velocity field is proportional to the density field

$$\theta = \operatorname{div}(\mathbf{v}) = -\beta \,\delta = -f \,\delta / b$$

where  $\beta$  is the anisotropy parameter, *b* is the linear bias of the galaxy population and

 $f = d \ln D / d \ln a \approx \Omega_m^{0.55}$ is the **rate** of the growth factor *D* 

The redshift space cross-power spectrum

$$P_{g\theta} \equiv - \langle \delta_g(\mathbf{k}) \theta(-\mathbf{k}) \rangle$$

can be infered from PV.

# Galaxy bias model

- 4-th order perturbation model including (McDonald&Roy 2009)
  - Linear and non-linear terms  $b_1$  and  $b_2$
  - Non-local bias term  $b_{s2}$
  - Tidal tensor term s(x)

$$\delta_g(\mathbf{x}) = \mathbf{b_1}\delta(\mathbf{x}) + \frac{1}{2}\mathbf{b_2}[\delta^2(\mathbf{x}) - \sigma^2] + \frac{1}{2}\mathbf{b_{s^2}}[\mathbf{s^2}(\mathbf{x}) - \langle \mathbf{s^2} \rangle]$$

- Analytical simplification assuming coevolution of halo and matter density fields, and bias to be purely local in the initial conditions  $b_{s2} = -4/7(b_1 - 1)$  (Baldauf+12)
- We include this model into our expressions for the power-spectra of lensing  $P_{gm}$  and RSD  $P^s(k,\mu)$  (using Taruya+2010 non-linear model), and including Alcock-Paczynski effet

### Expected lensing signals at small scales



• Excess surface mass density:

$$\Sigma_{\rm gm}(R) = \Omega_{\rm m} \rho_{\rm crit} \int_{-\infty}^{+\infty} g_{\rm l}(\chi) \left[ 1 + \xi_{\rm gm}(\sqrt{R^2 + \chi^2}) \right] d\chi$$

 Annular Differential Surface Density (ASAD):

$$\Upsilon(R; R_0) \equiv \Delta \Sigma(R) - \frac{R_0^2}{R^2} \Delta \Sigma(R_0)$$

Dark Energy Workshop – IAP, Oct 23rd, 2018

Baldauf et al., 2010

### Bias dependence on non-linear b<sub>2</sub>



- Correlation function  $\xi(s,\mu) = \frac{GG(s,\mu) - 2GR(s,\mu) + RR(s,\mu)}{RR(s,\mu)}$ 
  - Monopole and Quadrupole  $\xi_{\ell}(s) = \frac{2\ell + 1}{2} \int_{-1}^{1} \xi(s, \mu) L_{\ell}(\mu) d\mu$



Reid et al., 2012

ergy Workshop - IAP, Oct 23rd, 2018

### Lensing with CMASS



Dark Energy Workshop - IAP, Oct 23rd, 2018

## Lensing and clustering simulation

We used Big-Multidark simulation L=2.5 Gpc/h to produce lightcones extending on 0 < z < 2.3

1) Ray-tracing to produce WL mock catalogs (*Giocoli* et al. 2016, Metcalf & Petkova 2014)

2) Populating halos with VIPERS and CMASS galaxies using HOD and SHAM techniques (*de la Torre et al. 2013, Rodriguez-Torres et al. 2015*)





### Bias on the RSD side



Less biased if only selecting  $\xi_0$  and  $\xi_2$  at scale  $s_{min} > 17.8 h^{-1}$  Mpc  $\Omega_m$  depends little on  $s_{min}$ 

### Case with real data: CMASS & CFHT-S82/LS

Measurement of GGL in 250 deg2 of CFHT-S82/LS fields zSpec from

- VVDS i<sub>AB</sub> < 22.5,</li>
- DEEP2 R<sub>AB</sub> < 24.1,
- PRIMUS i<sub>AB</sub> < 23.5,
- VIPERS i<sub>AB</sub> < 22.5,
- SDSS-DR13

90% spectro complete in S82 at  $i_{AB}$  < 22.5 90% spectro complete in CFHTLS at  $i_{AB}$  < 24





10% bias due to zphot in CS82 with 22.5 cut



#### Lensing shape and zphot noise introduce noise and bias

Measurements around random lenses decrease large scale variance (see also Shirasaki et al. 2017)

Dark Energy Workshop – IAP, Oct 23rd, 2018

# Covariance matrices with mocks resampling

| Fields   | # of<br>Mocks | # of Mocks<br>resampling |
|----------|---------------|--------------------------|
| W1       | 15            | 720                      |
| W3       | 11            | 704                      |
| W4       | 27            | 729                      |
| Stripe82 | 4             | 3840                     |

Resampling of the **lensing** and **zphot noise** in the mocks to decrease the noise in the covariance matrices

Mean covariance  $\bar{C}_{ij} = \frac{1}{N_m \times N_r} \sum_{m=1}^{N_m \times N_r} {}^{(m)} \hat{C}_{ij}^{JK}$ 

Ρ

recision matrix 
$$\hat{\Phi}_{ij} = [ar{C}_{ij}]$$



Dark Energy Workshop – IAP, Oct 23rd, 2018

-1

### Data vs Mocks resampling



Error on mocks w/o JK > Error with data JK > Error with mocks JK

### **Tapering method**

Paz & Sánchez 2015



Tapering assumes correlation btw



 $T_p$  [ $h^{-1}$  Mpc] Dark Energy Workshop – IAP, Oct 23rd, 2018

### **Results on cosmological parameters**



# **Combining clustering and lensing**

Combine 3D clustering and lensing measurements using estimators such as:
Lensing: sensitive to

Zhang et al. 2007

$$E_{G} = \frac{\nabla^{2}(\psi - \phi)}{3H_{0}^{2}a^{-1}\beta\delta} = \frac{1}{\beta} \frac{Y_{gg}}{Y_{gg}} \propto \frac{b}{f} \frac{\Omega_{M_{0}}}{b} \approx \frac{\Omega_{M_{0}}}{f}$$
  
Clustering: sensitive to

Clustering: sensitive to redshift-space distortions and galaxy bias

galaxy bias and matter

density

• Cosmological interpretation :

• Galaxy-galaxy clustering  $\rightarrow P_{gg}(k)$  proportional to  $b^2 \sigma_{gg}^2$ 

• Galaxy-galaxy lensing  $\rightarrow P_{gm}(k)$  proportional to  $b \sigma_{8}^{2} \Omega_{m}$ 

## Results with E<sub>G</sub>



We don't observe any significant deviation of E<sub>G</sub> from GR predictions

# Evolution of E<sub>G</sub> with redshift

![](_page_19_Figure_1.jpeg)

## Conclusion

- Combination of RSD and GGL provides direct way to test gravity and LCDM model
- Light-cone lensing simulations are needed to properly estimate statistical errors
- Spectroscopic data is crucial to calibrate the redshifts of the lensing sources
- Our results are in agreement with Planck+18 predictions at z=0.57