Johanna Pasquet

General Introductior

Photometric redshifts DL network

Classification of light curve

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

A deep learning approach for the classification of supernovae and the estimation of photometric redshifts

Johanna Pasquet

Centre de Physique des Particules de Marseille

Dark energy colloque

25 October, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Johanna Pasquet

General Introduction

- Photometric redshifts
- DL network Our results

Classification of light curves

The problem of representativene Architecture and data Results SPCC LSST SDSS

Conclusion

Restance Figure 2 Figure

Credit : NASA

The dark energy problem

- What is the nature of dark energy?
- Is it "dark energy" arising from quantum fluctuations in the vacuum, or is it new gravitational physics?

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

The era of large surveys

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Need accurate redshits for cosmology

Reliable redshifts are necessary to constrain the dark energy equation-of-state and to study the large scale structure of the universe

 Baryonic Acoustic Oscillations

Weak lensing

Strong gravitational lensing around galaxy cluster CL0024+17

Credit : NASA/ESA/M.J. Jee (John Hopkins University)

Cosmic web

Results of a digital simulation showing the large-scale distribution of matter, with filaments and knots.

Credit: V.Springel, Max-Planck Institut für Astrophysik, Garching bei München

Johanna Pasquet

General Introduction

- Photometric redshifts
- Our results
- Classification of light curves
- The problem of representativeness Architecture and data Results SPCC LSST SDSS
- Conclusion

Supernovae la as cosmological probe

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

First application: The estimation of photometric redshift with a deep architecture

J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Photometric redshifts with Deep Learning Photometric redshifts from SDSS images using a Convolutional Neural Network (J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez) arxiv: 1806.06607, code available at: https://github.com/jpasquet/Photoz

Key elements :

- 1 A representative and a complete training database with r-band magnitude \leq 17.8 and redshift, z \leq 0.4 (516,525 galaxies)
- Photoz values + associated Probability Distribution Functions
- Operation of the second sec
- 4 A dedicated Neural Network architecture

Results obtained :

Clear improvements compared to other methods!

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Input SDSS galaxy images transmitted to the CNN

- large galaxies

- crowded images

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Main Galaxy Sample SDSS

A multi-band imaging and spectroscopic redshift survey

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Our architecture

Johanna Pasquet

General Introductio

Photometric redshifts DL network

Our results

Classification of light curves

The problem of representativene Architecture and data Results SPCC LSST SDSS

Conclusion

Results of the method

11

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Our results

Classification of light curve

The problem of representativened Architecture and data Results SPCC LSST Probability

Conclusion

0.4 0.2 0.1 0.0 0.4 0.2 0.1 0.0 0.4 0.3 0.2 0.1 0.0 0.4 0.3 0.2 0.1 0.0 0.4 0.3 0.2 0.1 0.0 0.15 0.10 0.15 0.20 0.25 0.05 0.10 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.30 0.00 0.30 Redshift -- Spectroscopic redshift -- Photometric redshift

Examples of PDFs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

12

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Our results

Classification of light curve

The problem of representativenes Architecture and data Results SPCC LSST SDSS

Conclusion

Summary results

Trial	training sample size	bias	σ	η
Training with 80% of the dataset	393,219			
Full test sample		0.00010	0.00912	0.31
(B16)		(0.00062)	(0.01350)	(1.34)
Widest 20% of PDFs		0.00005	0.00789	0.06
Stripe 82 only		-0.00009	0.00727	0.34
Stripe 82 with widest 20% of PDFs removed		0.00004	0.00635	0.09
Training with 50% of the dataset*	250,000	0.00007	0.00910	0.29
Training with 20% of the dataset	99,001	-0.00001	0.00914	0.30
Training with 2% of the dataset	10,100	-0.00017	0.01433	1.26
Training and testing on Stripe 82	15,771	-0.00002	0.00795	0.38

Johanna Pasquet

General Introductior

Photometrie redshifts

DL network

Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Second application: The classification of light curves of supernovae (SN Ia/ SN Non-Ia)

Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez

きょう きょう きょう きょう きょう

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativenes Architecture and data Results SPCC LSST SDSS

Conclusion

Difficulties for the classification

Many factors degrade the performance of machine learning algorithms:

Data can be sparse with an irregular sampling

Non-representativeness between the training and the test databases

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness

data Results SPCC LSST SDSS

Conclusion

The spectroscopic follow-up

Identify and measure the redshift of a galaxy

galaxy

Determine the nature of an observed object

Supernovae

16

Johanna Pasquet

General Introduction

Photometric redshifts DL network

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Non-representativeness between the training and test databases

The non-representativeness of the databases, which is a problem of mismatch, is critical for machine learning process.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Johanna Pasquet

General Introductior

Photometric redshifts

DL network

Classification of light curves

The problem of representativeness

Architecture ar data Results SPCC LSST SDSS

Conclusion

The main survey and the deep fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)

Johanna Pasquet

General Introductio

Photometric redshifts DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results

- SPCC
- LSST

SDSS

Conclusion

PELICAN: a deeP architecturE for the Light Curve ANalysis (Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez, just submitted)

Key elements :

- a complex Deep Learning architecture to classify light curves of supernovae
- 2 trained on a small and biased training database
- 3 overcome the problem of non-representativeness between the training and the test databases
- deal with the sparsity of data and the difference of sampling and noise

The ability of PELICAN to deal with the different causes of non-representativeness between the training and test databases, and its robustness against survey properties and observational conditions, put it on the forefront of the light curves classification tools for the LSST era.

Johanna Pasquet

General Introduction

Photometric redshifts

Our results

Classification of light curves

The problem of representativeness

Architecture and data

SPCC

LSST

Conclusio

Johanna Pasquet

General Introduction

- Photometric redshifts
- DL network
- Classification
- The problem of representativeness
- Architecture and data
- Results
- SPCC
- LSST
- SDSS

Conclusion

The Supernova Pho

- LSST simulated data
- Small training database (until 500 light curves)
- Non-representativeness between the training and the test databases due to the limitation of the spectroscopic follow-up
- Non-representativeness of the sampling and noise between main survey and deep fields

SDSS-II Supernova Survey Data (Frieman et al. 2008; Sako et al. 2008)

Non-representativeness between the training (simulated data) and the test databases (real data)

Different databases

- 1 The Supernova Photometric Classification Challenge in 2010 (SPCC, Kessler et al.)
 - Small training database (1,103 light curves)
 - Non-representativeness between the training and the test databases due to the limitation of the spectroscopic follow-up

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Johanna Pasquet

General Introductior

Photometric redshifts

Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC

SDSS

Conclusion

The SPCC challenge

- We compared our results to BDTs classifier + SALT2 features as it is the best combination in Lochner et al. (2016)
- PELICAN obtains an accuracy of 0.856 and an AUC of 0.934 which outperforms BDTs+SALT2 method which reaches 0.705 and 0.818

Johanna Pasquet

General Introductior

Photometric redshifts

Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST

Conclusion

Two methodologies:

 A training and a test on deep fields (DDF)

 A training on deep fields and a test on the main survey (WFD)

LSST simulated data

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Classification of light curves

The problem of representativeness Architecture and data Results

SPCC

LSST

Conclusi

Results on DDF

	Training database (spec only)	Test database (phot only)	Accuracy	Recall _{ia} Precision _{ia} > 0.95	Recall _{ia} Precision _{ia} > 0.98	AUC
D D F	500	1,500	0.849 (0.746)	0.617 (0.309)	0.479 (0.162)	0.937 (0.848)
	2,000	2,000	0.925 (0.783)	0.895 (0.482)	0.818 (0.299)	0.984 (0.882)
	2,000	22,000	0.934 (0.793)	0.926 (0.436)	0.851 (0.187)	0.986 (0.880)
	10,000	14,000	0.979 (0.888)	0.992 (0.456)	0.978 (0.261)	0.998 (0.899)

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Classification of light curves

The problem of representativeness Architecture and data Results

SPCC

LSST

SDSS

Conclusion

Results on WFD

	Training database (spec only)	Test database (phot only)	Accuracy	$\text{Recall}_{\text{la}}$ Precision _{la} > 0.95	$\text{Recall}_{\text{la}}$ Precision _{ia} > 0.98	AUC
W F D	DDF Spec : 2, 000	WFD : 15, 000	0.917 (0.650)	0.857 (0.066)	0.485 (0.000)	0.974 (0.765)
	DDF Spec : 3, 000	WFD : 40, 000	0.940 (0.650)	0.939 (0.111)	0.729 (0.000)	0.984 (0.752)
	DDF Spec : 10, 000	WFD : 80, 000	0.962 (0.651)	0.977 (0.121)	0.889 (0.010)	0.992 (0.760)

Johanna Pasquet

General Introductio

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results

SPCC

LSST SDSS

Conclusion

WFD

Further analysis of the behaviour of PELICAN

26

Johanna Pasquet

General Introduction

Photometric redshifts DL network Our results

Classification of light curve

The problem of representativeness Architecture and data Results SPCC LSST SDSS

Conclusion

Real Light Curve Simulated Light Curve 25 25 20 20 15 15 10 10 5 FLUX 0 0 -5 -5 -10 -10-15 -15 -20 -20 53645 53674 53704 53995 54018 54041 53616 54065 MJD MJD

Training database	test database	Accuracy	AUC
SDSS simulations :	SDSS-II SN	0.462	0.722
219,362	confirmed : 582	0.402	
SDSS simulations :			
219,362	SDSS-II SN	0.868	0.850
SDSS-II SN confirmed	confirmed : 582	0.808	0.850
80			

27

SDSS data

Johanna Pasquet

General Introduction

Photometric redshifts

DL network Our results

Classification of light curves

The problem of representativeness Architecture and data Results SPCC LSST

Conclusion

Era of Big data

The future surveys will deliver multi-band photometry for billions of sources

Summary

Many issues for the classification algorithms

Small size of the training database due to the limitation of the spectroscopic follow-up

Several problems of representativeness

Nature of data : sparse with an irregular sampling

Promising results for the estimation of photometric redshifts

We developed a CNN used as a classifier to estimate photometric redshifts and their associated PDFs. • Our work shows significant significant improvements for:

- the dispersion of photometric redshifts,
- the PDFs that are well calibrated
- no measurable bias with the reddening and the inclination of galaxies

Johanna Pasquet

General Introduction

Photometric redshifts

DL network

Classification of light curve

The problem of representativeness Architecture and

Results

SPCC

LSST

SDSS

Conclusion

New solutions for the classification of light curves

PELICAN obtained the best performance ever achieved with a non-representative training database of the SPCC challenge

PELICAN is able to significantly remove several types of non-representativeness between the training and the test databases due to :

- the limit in brightness and redshift of the spectroscopically confirmed data
- the different observational strategies
- the difficulty of simulated data to reproduce perfectly real data

PELICAN can deal with the data that are sparse, with an irregular sampling

Perspectives

PELICAN offers promising perspectives for the classification of light curves and the estimation of photometric redshifts, as the method can be applied to images.

Summary

29

Johanna Pasquet

Appendix

The main survey and the deep fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)

Johanna Pasquet

Appendix

Assess the prediction quality of our PDFs

The PIT statistic (Dawid 1984) is based on the histogram of the cumulative probabilities at the true value. For galaxy *i* with spectroscopic redshift z_i in the test sample :

$$\operatorname{PIT}_{i} = \int_{-\infty}^{z_{i}} PDF_{i}(z) dz$$

Johanna Pasquet

Appendix

Impact of the extinction of our Galaxy on photometric redshifts

Our method tends to overestimate redshifts in obscured regions (confusing galactic dust attenuation with redshift dimming), unless $E_{(B-V)}$ is used for training

Johanna Pasquet

Impact of the disk inclination of galaxies on photometric redshifts

Our method automatically corrects for galactic dust reddening which increases with disk inclination

33

Johanna Pasquet

The Light Curve Image (LCI)

Johanna Pasquet

Impact of Signal-to-Noise Ratio (SNR) on widths of PDFs

The Stripe 82 region, which combines repeated observations of the same part of the sky, gives us the opportunity to look into the impact of ${\sf SNR}$

Johanna Pasquet

Projection of features

