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The dark energy problem

Credit : NASA

• What is the nature of dark
energy ?

• Is it "dark energy" arising
from quantum fluctuations
in the vacuum, or is it new
gravitational physics ?
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The era of large surveys

1924

1989

2008

2018

2032

2027

Henry Drapper Catalog (0.2 Million)

Guide Star Catalog (20 Million)

SDSS (230 Million)

Dark Energy Survey (400 Million)

Euclid (10 billion)

Large Synoptic Survey Telescope (37 billion)
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Need accurate redshits for cosmology

Reliable redshifts are necessary to constrain the dark energy
equation-of-state and to study the large scale structure of the
universe

Strong gravitational lensing 
around galaxy cluster CL0024+17

Credit : NASA/ESA/M.J. Jee (John Hopkins University)

Weak lensing Cosmic web

Results of a digital simulation showing the 
large-scale distribution of matter, with 
filaments and knots.

Credit: V.Springel, Max-Planck Institut für Astrophysik, Garching bei 
München

Baryonic Acoustic 
Oscillations

Image from SDSS DR9
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Supernovae Ia as cosmological probe

History of the Universe

Dark energy causes the universal 
expansion to accelerate

Recent observations of supernovae 
have produced a value for an 
acceleration that implies a universe 
that is about 70 % dark energy

High-z

First proof with supernovae Ia
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First application: The estimation of photometric
redshift with a deep architecture

J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez
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Photometric redshifts with Deep Learning
Photometric redshifts from SDSS images using a Convolutional
Neural Network (J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D.
Fouchez)
arxiv: 1806.06607, code available at: https://github.com/jpasquet/Photoz

Key elements :

1 A representative and a complete training database with
r-band magnitude ≤ 17.8 and redshift, z ≤ 0.4 (516,525
galaxies)

2 Photoz values + associated Probability Distribution
Functions

3 Photoz immune to IQ variations and neighbours
contamination

4 A dedicated Neural Network architecture

Results obtained :
Clear improvements compared to other methods!
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Input SDSS galaxy images transmitted
to the CNN

–  large galaxies — crowded images8
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Main Galaxy Sample SDSS

A multi-band imaging and spectroscopic redshift survey

Stripe 82
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Our architecture

Input images of size 64x64

Output probabilities

z

Vector of posterior 
probabilities for the 
galaxy redshift to be 
in a z-bin

The estimator for z-phot is the 
centroid of the zPDF
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Results of the method

⟨Δ z ⟩=1.0×10−4

σ=9.1×10−3

η=0.31%

⟨Δ z ⟩=6×10−4

σ=1.3×10−2

η=1.35%

 Factor of 6 improvement

30 % improvement

Factor of 4 improvement

Δ z=( z phot−zspec )/(1+z spec)

σ=1.4826×MAD
MAD=Median(|Δ z−Median(Δ z )|)

η=|∆ z|>0.05
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B16
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Examples of PDFs

P
ro

ba
bi

lit
y

Redshift

-- Spectroscopic redshift                             -- Photometric redshift 
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Summary results
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Second application: The classification of light
curves of supernovae (SN Ia/ SN Non-Ia)

Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez
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Difficulties for the classification
Many factors degrade the performance of machine learning
algorithms:

Small training databases

Data can be sparse with an irregular 
sampling

Non-representativeness between 
the training and the test databases

Training database

Test database
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The spectroscopic follow-up

galaxy

Identify and measure the redshift of a galaxy

Supernovae 

Determine the nature of an observed object
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Non-representativeness between
the training and test databases

The non-representativeness of the databases, which is a
problem of mismatch, is critical for machine learning process.
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The main survey and the deep
fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)
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PELICAN: a deeP architecturE for the LIght Curve ANalysis
(Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez,
just submitted)

Key elements :

1 a complex Deep Learning architecture to classify light
curves of supernovae

2 trained on a small and biased training database
3 overcome the problem of non-representativeness between

the training and the test databases
4 deal with the sparsity of data and the difference of

sampling and noise

The ability of PELICAN to deal with the different causes of
non-representativeness between the training and test databases,
and its robustness against survey properties and observational
conditions, put it on the forefront of the light curves
classification tools for the LSST era.19
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Pooling
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Legend

Loss layer

Autoencoder
module

Contrastive
module

Classification 
module
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Different databases

The Supernova Photometric Classification Challenge in 2010 (SPCC, Kessler et al.)

Small training database (1,103 light curves)

Non-representativeness between the training and the test 
databases due to the limitation of the spectroscopic follow-up

LSST simulated data 

Small training database (until 500 light curves)

Non-representativeness between the training and the test 
databases due to the limitation of the spectroscopic follow-up

Non-representativeness of the sampling and noise between 
main survey and deep fields

SDSS-II Supernova Survey Data (Frieman et al. 2008; Sako et al. 2008)

Non-representativeness between the training (simulated data) and the test databases (real 
data)

21
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The SPCC challenge
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• We compared our results to BDTs classifier + SALT2 features
as it is the best combination in Lochner et al. (2016)

• PELICAN obtains an accuracy of 0.856 and an AUC of 0.934
which outperforms BDTs+SALT2 method which reaches 0.705
and 0.818
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LSST simulated data
Two methodologies:

1 A training and
a test on deep
fields (DDF)

2 A training on
deep fields
and a test on
the main
survey (WFD)

DDF light curve

WFD light curve

23



Dark Energy

Johanna Pas-
quet

General
Introduction

Photometric
redshifts
DL network

Our results

Classification
of light curves
The problem of
representativeness

Architecture and
data

Results

SPCC

LSST

SDSS

Conclusion

Results on DDF
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PELICAN - Train 10k Test 14k (0.998)
SALT2+BDTs - Train 10k Test 14k (0.899)

PELICAN - Train 5k Test 5k (0.994)
SALT2+BDTs - Train 5k Test 5k (0.886)

PELICAN - Train 2k Test 2k (0.984)
SALT2+BDTs - Train 2k Test 2k (0.882)
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D
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500 1,500 0.849
(0.746)

0.617
(0.309)

0.479
(0.162)

0.937
(0.848)

2,000 2,000 0.925
(0.783)

0.895
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(0.882)

2,000 22,000 0.934
(0.793)

0.926
(0.436)
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(0.187)

0.986
(0.880)

10,000 14,000 0.979
(0.888)
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(0.899)
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Results on WFD
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PELICAN - Train 2k Test 15k (0.974)
SALT2+BDTs - Train 2k Test 15k (0.765)

PELICAN - Train 3k Test 40k (0.984)
SALT2+BDTs - Train 3k Test 40k (0.752)

PELICAN - Train 10k Test 80k (0.992)
SALT2+BDTs - Train 10k Test 80k (0.760)
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(0.765)
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(0.650)
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(0.752)

DDF Spec : 
10, 000

WFD : 80, 000 0.962 
(0.651)

0.977
 (0.121)
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 (0.010)

0.992 
(0.760)
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Further analysis of the behaviour
of PELICAN
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5 10 15 20 25 30
Number of observations

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

5 10 15 20 25 30
SNR

0.6

0.7

0.8

0.9

1.0

Accuracy Training dataset Testing dataset

23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0
Peak magnitude

0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

N

WFD

10 15 20 25 30 35 40 45
Number of observations

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

4 6 8 10 12 14
SNR

0.6

0.7

0.8

0.9

1.0

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
Peak magnitude

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

N

26



Dark Energy

Johanna Pas-
quet

General
Introduction

Photometric
redshifts
DL network

Our results

Classification
of light curves
The problem of
representativeness

Architecture and
data

Results

SPCC

LSST

SDSS

Conclusion

SDSS data
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Summary

Era of Big data

The future surveys will deliver multi-band 
photometry for billions of sources

Many issues for the classification 
algorithms

Small size of the training database due to the 
limitation of the spectroscopic follow-up

Several problems of representativeness 

Nature of data : sparse with an irregular 
sampling

Promising results for the estimation of photometric redshifts

 We developed a CNN used as a classifier to estimate photometric redshifts and their 
associated PDFs. • Our work shows significant significant improvements for:

the dispersion of photometric redshifts,

the PDFs that are well calibrated
no measurable bias with the reddening and the inclination of galaxies
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Summary

New solutions for the classification of light curves

 PELICAN obtained the best performance ever achieved with a non-representative training 
database of the SPCC challenge

PELICAN is able to significantly remove several types of non-representativeness between the 
training and the test databases due to :

   the limit in brightness and redshift of the spectroscopically confirmed data

   the different observational strategies

   the difficulty of simulated data to reproduce perfectly real data

PELICAN can deal with the data that are sparse, with an irregular sampling

Perspectives

 PELICAN offers promising perspectives for the classification of light curves and the 
estimation of photometric redshifts, as the method can be applied to images.
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The main survey and the deep
fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)
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Assess the prediction quality of our PDFs
The PIT statistic (Dawid 1984) is based on the histogram of the
cumulative probabilities at the true value. For galaxy i with spectroscopic
redshift zi in the test sample :

PITi =
∫ zi

−∞
PDFi (z)dz
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Impact of the extinction of our Galaxy
on photometric redshifts

Our method tends to overestimate redshifts in obscured regions
(confusing galactic dust attenuation with redshift dimming), unless
E(B−V ) is used for training
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Impact of the disk inclination of galaxies on
photometric redshifts

Our method automatically corrects for galactic dust reddening which
increases with disk inclination

g

r

i

z

Time
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The Light Curve Image (LCI)
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Overfitting of missing data (zero values)
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Impact of Signal-to-Noise Ratio (SNR)
on widths of PDFs

The Stripe 82 region, which combines repeated observations of the
same part of the sky, gives us the opportunity to look into the impact
of SNR

35



Dark Energy

Johanna Pas-
quet

Projection of features
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