Pierros Ntelis

Collaborators: J. Rich J.C. Hamilton J.M. Le Goff A.Ealet S. Escoffier A.J. Hawken A. Tilquin

S. 1

Post Doc Aix-Marseille University, CPPM

P. Ntelis

What can fractality tell us about the universe?

Romansco Broccoli, Italy since 16th c.

S. 2

Outline

ACDM Phenomenology

Challenges of Cosmological Principle

Standard Rulers and Candles

Homogeneity scale as a standard Ruler

Conclusion and Outlook

P. Ntelis

FIGURE 2.2: Left: 2D representation of homogeneous (and isotropic) galaxy distribution Right: 2D representation of an isotropic (but not homogeneous) galaxy distribution [See text for explanation][Credit on [13]] M.Stolpovskiy

S. 4

P. Ntelis

Standard Phenomenology ΛCDM

Least
$$\mathcal{S}_{EH}=c^4\int d^4x\sqrt{-g}rac{R}{16\pi G}$$

Action Principle $G_{\mu\nu}\propto T_{\mu\nu}$
Metric Ansatz

$$g_{\mu\nu} \simeq \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$$

+ X, Cosmic Components, (b,CDM,DE,...)

 $\mathcal{D}_t \delta f_X(\vec{x}, \vec{p}, t) = \mathcal{C}[\delta f_X(\vec{x}, \vec{p}, t)]$ 8 coupled non linear differential

S. 5

Perturbed Einstein-Boltzmann Equations

2nd Colloque National DE, October 2018

S. 6

standard **ACDM** phenomenology

Basic aspects of this model:

- -Initial Conditions: Primordial fluctuations, Inflation?
- Expansion
- -Acceleration
- -Statistical homogeneity and isotropy on large scales
- -Baryon Acoustic Oscillations (BAO)

Cosmological Constant Problem

Can these phenomenological aspects, be described in a better way than standard GR, Λ ?

P. Ntelis

Outline

ACDM Phenomenology

Challenges of Cosmological Principle

Standard Rulers and Candles

Homogeneity scale as a standard Ruler

Conclusion and Outlook

P. Ntelis

Challenges of Cosmologically Principled Universes:

A historical list of large scale structures(LSS):

<mark>S.</mark> 9

Year	Name	Size (Mpc)	Detection Method	Notes	Dedication
1983	Webster (5)LQG	100	no-info	no-info	A.Webster
1987	Pisces-Cetus SuperCluster Complex	350	spectro-z, percolation analysis L ₀ =70 h ⁻¹ Mpc, 10 members, L>L ₀ no significant	h=75	R.B.Tully
1987	Giand Void	350	L ₀ =200 h ⁻¹ Mpc, Spectro-z, FoF	Flat, Λ =0, H0=50km/s/Mpc,q ₀ =0.5	A.I.Kopylov et al.
1989	Great Wall	240	spectro-z	blocked by MW gal plain	Hunchra & Geller
2003	Sloan Great Wall	420	By comparison of Great Wall	Flat	J.R.Gott
2006	Newfound Blob	65	FOCAS,Subaru, Lya emitters	Flat,0.3,0.70,z~3.1	0510762v1
2007	Super Void	140	NVSS, Waveletes+ISW, Counts+Brighnes	Close to cmb cold Spot	Rudnick et al. 0704.0908v2
2012	Huge CC (73)LQG	500/1240	SDSS, FoF,L ₀ =100 h ₇₀ ⁻¹ Mpc	Flat,0.27,0.73,1.0 <z<1.8< td=""><td>1211.6256v1</td></z<1.8<>	1211.6256v1
2013	Hecules-CoronaBorelis	2.2Gpc	SGRBM, γ-Ray Bursts, (θφ)-KS test, z-independent	h=0.6780	1311.1104
2014	Lianakea	160h-1	Velocities Wiener Filter	no-info	1409.0880v1
2016	BOSS Great Wall	271 h ⁻¹	SDSS, $8h^{-1}Mpc$ smoothing , L>5L ₀	Flat,0.27,0.73,z~0.47	1602.08498v1

P. Ntelis

Challenges of Cosmologically Principled Universes:

S. 10

P. Ntelis

Challenges of Cosmologically Principled Universes:

P. Ntelis

Challenges of Cosmologically Principled Universes:

Fractal Universe and cosmic acceleration in a LTB scenario: SN-Ia

arXiv:1810.06318

no Λ, re-analyses UNION2

The projected mass distribution and the transition to homogeneity: Gal-Clustering

arXiv:1810.03539

FLRW, re-analyses SDSS DR7

Cosmological Principle is not in the sky: Gal-Clustering

arXiv:1611.02139

S. 12

FLRW, re-analyses SDSS DR7

P. Ntelis

Challenges of Cosmologically Principled Universes:

Galaxies are biased tracers of matter (Cosmic Bias quantifies the galaxy-type selection) Information only on the past lightcone, c finite Cosmology dependence (Redshift ->Distance) Redshift Space Distortions (Gravity, Kaiser, FoG)

P. Ntelis

Outline

ACDM Phenomenology

Challenges of Cosmological Principle

Standard Rulers and Candles

Homogeneity scale as a standard Ruler

Conclusion and Outlook

P. Ntelis

Standard Candles and Rulers

Standard Candles (1998) Riess, Schmidt, Perlmutter @ acceleration 2011

SN-la

Same L_{max}

at explosion at diff z,t

BAO peak On $\Omega_k = 0 @ \%$ C.L.

S. 15

P. Ntelis

Outline

ACDM Phenomenology

Challenges of Cosmological Principle

Standard Rulers and Candles

Homogeneity scale as a standard Ruler

Conclusion and Outlook

P. Ntelis

P. Ntelis

 $N(< r) = \int_0^r dd(s) ds \propto r^{D_2}$ Counts-in-Spheres: $D_2(r) = \frac{d \ln N(< r)}{d \ln r}$ Fractal Dimension: Homogeneous $D_2(r) = 3$ @ large scales Inhomogeneous $D_2(r) < 3$ @ small scales (clustering) Transition to Homogeneity at: $D_2(R_H) = 3 @ 1\%$ (Arbitrary Choice; Independent of survey)

$$\mathcal{D}_2(r) = 3 + \frac{d\ln}{d\ln r} \left[1 + \frac{3}{r^3} \int_0^r \xi(s) s^2 ds \right]$$

P. Ntelis

2nd Colloque National DE, October 2018

S. 18

Measurement:

P. Ntelis

2nd Colloque National DE, October 2018

S. 19

P. Ntelis

P. Ntelis

Outline

ACDM Phenomenology

Challenges of Cosmological Principle

Standard Rulers and Candles

Homogeneity scale as a standard Ruler

Conclusion and Outlook

S. 22

P. Ntelis

Thank you for your Attention!

Conclusions

- New complementary cosmological ruler, R_H!
- R_H Improves the precision on Ω_k , (Ω_m, Ω_Λ)
- D₂ Exclude fractal universes at large scales
- D₂ Exclude inhomogeneous universe at large scales
- D₂ Confirmation of ΛCDM phenomenology in ~% level
- D₂ Confirmation of Cosmological Principle

P.Ntelis et al. '18 arXiv:1810.09362 P.Ntelis et al. '17 arXiv:1702.02159

Outlook

RH cosmo-implications analysis is applicable on:

- **-** QSO, ELG, (BBH ...), ...
- CMB TT map
- Cosmic Web (Nodes, Filaments, Sheets, Voids)
- SuperNovae Clustering?
- Modifications of Gravity Models, (w, γ, ...)

Back Up

<mark>S.</mark> 24

P. Ntelis

P. Ntelis

Build the chi2 square MCMC method according to:

 $\begin{array}{l} \textbf{\chi2(A,B,p_T;p_F)=} \\ \textbf{(Data)} & \textbf{(Theoretical model)} \\ \\ \sum_{z=1}^{5} \left(\frac{\mathcal{R}_{H}^{G}(z;p_F) - \mathcal{R}_{H}^{M,th}(z;p_F) \times b(z;A,B) \times \alpha(z;p_F,p_T)}{\sigma_{\mathcal{R}_{H}^{G}}(z)} \right)^{2} \end{array}$

with

$$\alpha(z; p_F, p_T) = d_V(z; p_T)/d_V(z; p_F)$$

Where d_v is the volume distance, $p_T = (\Omega_m, \Omega_\Lambda)$ and F, stands for Fiducial (fixed parameters) T, stands for the True (parameters we explore) $b(z, A, B) = A \left[\frac{1+z}{1+z_m} \right]^B$

P. Ntelis

P. Ntelis

2nd Colloque National DE, October 2018

<mark>S.</mark> 27

$$F_{ij}^{R_H} = \frac{1}{\sigma_{R_H-gal}^2} \sum_{z} \frac{\partial^2 R_H(z)}{\partial \theta_i \partial \theta_j}$$

$$F_{ij}^{BAO} = \frac{1}{\sigma_{r_s-gal}^2} \sum_{z} \frac{\partial^2 r_s(z)}{\partial \theta_i \partial \theta_j}$$

Error as estimated by CMASS analysis

P. Ntelis

S. 29

P. Ntelis

Fig. 18. One- and two-standard deviation constraints on the

P.Ntelis et al. arXiv:1810.09362

J.Bautista et al., arXiv:1702.00176

S. 30

P. Ntelis

Weak challenging signal of gal-clustering in the back ground of gravitational waves https://journals.aps.org/prd/pdf/10.1103/PhysRevD.86.083512

Why not clustering from BBH?

P. Ntelis

Back Up

<mark>S.</mark> 32

P. Ntelis