Cosmology with Galaxy Clustering

Sylvain de la Torre

Colloque National Dark Energy Paris, 24 octobre 2018

Large-scale structure observations

- In the late universe, LSS is mostly seen through galaxy spatial distribution
- Galaxy spectroscopic surveys map the LSS in detail

Large-scale structure observations

N-point statistics

Zehavi et al. 2011

Two-point statistics

The "probability of seeing a structure" can be casted in terms of the galaxy overdensity: $\rho = \rho_0$

$$\delta = \frac{\rho - \rho_0}{\rho_0}$$

The correlation function is simply the real-space two-point statistic of the galaxy field:

$$\xi(r) = \langle \delta(\mathbf{x})\delta(\mathbf{x} + \mathbf{r}) \rangle$$

Its Fourier analogue, the galaxy power spectrum, is defined as:

 $P(k) = \langle \delta(\mathbf{k}) \delta(\mathbf{k}) \rangle$

Higher order statistics

$$\begin{aligned} \xi(r) &= \langle \delta(\mathbf{x_1})\delta(\mathbf{x}+\mathbf{r}) \rangle \\ \zeta(r_1, r_2, r_3) &= \langle \delta(\mathbf{x_1})\delta(\mathbf{x_2})\delta(\mathbf{x_3}) \rangle \end{aligned}$$

First constraints from galaxy P(k)

2dFGRS, Percival et al. 2001 SDSS, Tegmark et al. 2002

 Galaxy power spectrum full shape (linear scales) sensitive to:

h, $\Omega_{\rm m}h^2$, $\Omega_{\rm b}h^2$, n_s, $b\sigma_8$

Cole et al. 2005

Eisenstein et al. 2005

First detections of BAO in galaxy clustering, sensitive to: H(z), $D_A(z)$

Large redshift surveys for cosmology (non-exhaustive):

- WiggleZ (Blake et al., 2011)
- SDSS/BOSS (Dawson et al, 2013)
- VIPERS (Guzzo et al. 2014)
- SDSS/eBOSS (Dawson et al., 2016)

More coming in the next years (2020-2025): PFS, DESI, Euclid, WFIRST

Cosmology from galaxy clustering

Galaxies

Galaxy correlation function

• BAO scale is determined by the sound horizon at drag epoch (z_d) :

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz ~ pprox 150 \text{ Mpc}$$

- BAO scale can used as a standard ruler
- For 3D spherically averaged separation, sensitive to:

$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Fiducial model used for estimating the correlation function, estimates the deviation of BAO peak position with respect to fiducial position (*Alcock-Paczynski effect*):

$$\alpha = \frac{D_V(z)r_d^{\rm fid}}{D_V^{\rm fid}r_d}$$

- Non-linear effects on BAO
 - As structure grows, galaxy peculiar velocities smooth out the BAO peak on scales of 15-20 Mpc/h
 - PT or numerical simulations predict a Gaussian damping of the peak

$$\Delta^2(k) = \left\{\Delta^2_{\mathrm{lin}}(k) + \cdots\right\} \exp\left[-k^2 \Sigma^2/2\right] + \Delta^2_{22} + \cdots$$

Reconstruction: mitigate non-linear effects and sharpen the BAO peak (usually based on Zel'dovich approximation)

Reconstruction mugate non-linear effects and sharpen the BAO peak (usually based on Zel'dovich approximation)

BAO: major cosmological probe

Alam et al. 2017

BAO provides one of the most accurate geometrical constraints

Understanding Cosmic Acceleration

... or modify gravity theory?

Add Cosmological Constant or Dark Energy

 To distinguish these two radically different options: need to probe the dynamics of the Universe

Redshift-space distortions

Distance in redshift-space: $s = r + rac{v_{los}}{aH}$

correlation function 2012 al. et Torre

la

de

80

Galaxy anisotropic

Redshift-space distortions

Cosmology from galaxy clustering

• Measure expansion history:

Baryonic Acoustic Oscillations (BAO), Alcock-Paczynski

Test of the expansion/DE EoS: H(z), $D_A(z)$

- Measure structure growth of structure :
 - Redshift-Space Distortions (RSD)

Test of gravity/acceleration: *f(z)*

- Measure neutrino mass & primordial non-gaussianity
 - P(k) shape on very small or very large scales

Cosmology from galaxy clustering Methods

- Interpretation of galaxy clustering: model non-linear physics
 - Different approaches: erase NL (e.g. BAO reconstruction) or try model them (e.g. RSD modelling)
 - Currently used theoretical models to predict GC observables break-down in the non-linear regime
 - Improvements are necessary to reduce systematics from modelling (e.g. RSD)
- Optimization can be done on the choice/combination of tracers
 - Use of specific populations or cross-correlations
 - Weak lensing information very complementary (at the level of the observables)

NL modelling with Perturbation Theory

• Eulerian non-local bias (*McDonald & Roy, 2009*):

$$\begin{split} \delta_{\rm h}({\bf x}) &= b_1 \delta({\bf x}) + \frac{1}{2} b_2 [\delta({\bf x})^2 - \sigma_2] + \frac{1}{2} b_{s^2} [s({\bf x})^2 - \langle s^2 \rangle] \cdot \\ & \swarrow \\ & \land \\ & : \\ &$$

• RSD model (Taruya et al. 2010):

$$P_{\text{FoG}}^{(s)}(k,\mu) = D_{\text{FoG}}(k,\mu;\sigma_{\text{FoG}}) \left[P_{g,\delta\delta}(k) + 2f\mu^2 P_{g,\delta\theta}(k) + f^2 \mu^4 P_{\theta\theta}(k) + b_1^3 A(k,\mu,f/b_1) + b_1^4 B(k,\mu,f/b_1) \right],$$

$$\begin{split} P_{\mathrm{g},\delta\delta}(k) &= b_1^2 P_{\delta\delta}(k) + 2b_2 b_1 P_{b2,\delta}(k) + 2b_{s2} b_1 P_{bs2,\delta}(k) \\ &+ 2b_{3\mathrm{nl}} b_1 \sigma_3^2(k) P_{\mathrm{m}}^{\mathrm{L}}(k) + b_2^2 P_{b22}(k) \\ &+ 2b_2 b_{s2} P_{b2s2}(k) + b_{s2}^2 P_{bs22}(k) + N, \\ P_{\mathrm{g},\delta\theta}(k) &= b_1 P_{\delta\theta}(k) + b_2 P_{b2,\theta}(k) + b_{s2} P_{bs2,\theta}(k) \\ &+ b_{3\mathrm{nl}} \sigma_3^2(k) P_{\mathrm{m}}^{\mathrm{lin}}(k), \end{split}$$

Other LSS tracers

- Cosmic voids
 - Cosmic voids are interesting objects, to some extent simpler to model
 - Can be used for RSD and Alcock-Pazcynski test

Complementarity with weak lensing

Baldauf et al., 2010

- Weak lensing and galaxy clustering are very complementary
- g-g lensing and galaxy clustering of same foreground galaxies allows breaking degeneracies between cosmological parameters and galaxy bias
- One can also defined combined observables (e.g. *E_G*)

RSD and galaxy-galaxy lensing

 Weak lensing and galaxy clustering allows breaking the classical *f*-σ₈-b degeneracy in GC

Three-point & higher statistics

- Galaxy field is non-Gaussian and has non-vanishing higher order statistics
- Three-point statistics is accessible from data (3-point correlation function, bispectrum), higher orders more difficult
- Three-point statistics in combination with two-point statistics allows in principle removing bias degeneracy
- Generally, NL three-point statistics are difficult to model analytically, so hard to include in a likelihood

Three-point statistics

BAO feature 4.5 σ detection in the 3-point correlation function

Three-point statistics

Combining two- and three-point statistics

Future

Future is bright! Next-generation galaxy surveys designed to extract most of the cosmological information from galaxy clustering: large probed volumes, sufficiently high galaxy/quasars sampling rate

With Euclid & DESI we expect:

- Subpercent accuracy on the BAO scale
- Percent accuracy on the growth rate of structure and γ
- → Crucial to solve the Dark Energy problem

Precision cosmology with galaxy clustering

Report of the Euclid galaxy clustering systematic error budget tiger team

Systematic effect	impact	impact	Maturity
	on BAO	on RSD	of mitigation
Reconstruction	large	none	medium
Nonlinear evolution of dark-matter	medium	large	medium
Redshift-space distortions	low	large	low
Galaxy density bias	low	large	low
Massive neutrinos	low	large	medium
Galaxy velocity bias	low	large	low
Variations of model template with cosmology	low	unknown	low
Lightcone & projection effects	low?	low?	low
Relative velocity and density perturbations between baryons and dark matter	small?	small?	small?

Galaxy clustering cosmology is mature but still, methods need further refinement to reach the exquisite statistical accuracy provided by nextgeneration cosmological surveys (e.g. DESI, Euclid)