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Outline

* Does lensing by structure bias the distance-redshift relation?
*  Why there 1s no Newtonian backreaction

* Some challenges for relativistic backreaction
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How far away is the CMB?
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Hubble diagram from SN1a - assumes no flux bias from lensing
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Lensing makes distance D(z)
a random function of position

PATH OF LIGHT
AROUND
DARK MATTER

But does it systematicall | OBSERVED SKY
bias D(z)7 : ' T )



OBSERVATIONS IN A UNIVERSE HOMOGENEOUS IN THE MEAN

Ya. B. | Zel’dovich

Translated from Astronomicheskii Zhurnal, Vol. 41, No. 1,

pp. 19-24, January-February, 1964

Original article submitted June 12, 1963

A local nonuniformity of density due to the concentration of matter of the universe into separate

galaxies produces a significant change in the angular dimensions and luminosity of distant ob-
jects as compared to the formulas for the Friedman model.

The propagation of light in a homogeneous and
isotropic model of the expanding universe (first
studied by A. A. Friedman) has been investigated
in a number of papers [1, 2, 3].

In these papers expressions wereobtained for
the observed angular diameter ® and the observed
brightness of an object with a known absolute diam-
eter and absolute brightness as a function of the dis-
tance or, strictly speaking, the red shift of the ob-
ject A = (wp — w) /wy.

In particular, there is a remarkable feature
in the function ®(A), namely, the presence of a
minimum when A is approximately equal to 1/2.
Formula (10) and Fig. 6 in the appendix show the
variation of the function f(A) =rH/c® which is in-
versely proportional to ® for a given density of mat-
ter. Here r is the radius of the object, His Hubble's

Fig. 2.

A mass situated between these rays bends the
latter in such a way that ® is increased (Fig. 2).
What we have in mind is the bending of light rays
by the gravitational field predicted by Einstein; this
bending amounts to 1. 75" for a light ray passing
near the limb of the solar disc and has been con-
firmed by observation.




ON THE PROPAGATION OF LIGHT IN INHOMOGENEOUS
28 COSMOLOGIES. I. MEAN EFFECTS

James E. GUNN

. ifornia Institute of Technology and Jet Propulsion Laboratory
y &,» Received February 23, 1967; revised May 23, 1967

\ ABSTRACT

The statistical effects of local inhomogeneities on the propagation of light are investigated, and
deviations (including rms fluctuations) from the idealized behavior in homogeneous universes are in-
vestigated by a perturbation-theoretic approach. The effect discussed by Feynman and recently by
Bertotti of the density of the intergalactic medium being systematically lower than the mean mass
density is examined, and expressions for the effect valid at all redshifts are derived.

I. INTRODUCTION

In an unpublished colloquium given at the California Institute of Technology in
1964, Feynman discussed the effect on observed angular diameters of distant objects
if the intergalactic medium has lower density than the mean mass density, as would
be the case if a significant fraction of the total mass were contained in galaxies. It is
an obvious extension of the existence of this effect that luminosities will also be affected,
though this was apparently not realized at the time. This realization prompted the
conviction that the effect of known kinds of deviations of the real Universe from the
homogeneous isotropic models (upon which predictions had been based in the past)
upon observable quantities like luminosity and angular diameter should be 1nvest1gated
The author (1967) has recently made such a study for angular diameters; the present
work deals primarily with mean statistical effects upon luminosity. A third paper will
deal with possible extreme effects one may expect to encounter more rarely. Some of
the results discussed here have been discussed independently by Bertotti (1966) and
Zel’dovich (1965).



Kantowski '69

CORRECTIONS IN THE LUMINOSITY-REDSHIFT RELATIONS
OF THE HOMOGENEOUS FRIEDMANN MODELS

R. KANTOWSKI*

Southwest Center for Advanced Studies, Dallas, Texas
Recetved January 22, 1968, revised March 22, 1968

ABSTRACT

In this paper the bolometric luminosity-redshift relations of the Friedmann dust universes (A = 0)
are corrected for the presence of inhomogeneities. The “locally’’ inhomogeneous Swiss-cheese models
are used, and it is first shown that the introduction of clumps of matter into Friedmann models does not
significantly affect the R(z) or R(v) relations (Friedmann radius versus the redshift or affine parameter)
along a null ray. Then, by the use of the optical scalar equations, a linear third-order differential equation
is arrived at for the mean cross-sectional area of a light beam as a function of the affine parameter. This
differential equation is confirmed by rederiving its small redshift solution from an interesting geometrical
point of view. The geometrical argument is then extended to show that ‘“mild’’ inhomogeneities of a
transparent type have no effect on the mean area of a light beam.
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Fi1c. 1.—Spacelike section of a typical Swiss-cheese universe




Dyer & Roeder '72

THE DISTANCE-REDSHIFT RELATION FOR UNIVERSES
WITH NO INTERGALACTIC MEDIUM

C. C. Dyer* anD R. C. ROEDERT
Kitt Peak National Observatory,I Tucson, Arizona
Received 1972 A pril 19

ABSTRACT

The distance-redshift relation is derived for model universes in which there is negligible intergalactic
matter and in which the line of sight to a distant object does not pass close to intervening galaxies. When
fitted to observations, this relation yields a higher value of go than does a homogeneous model.
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F16. 1.—The dimming, relative to the homogeneous model, assuming that the beam passes far from
any intervening galaxies (Jower curve) and assuming that the beam passes no closer than 2 kpc to the
center of galaxies similar to our own (upper curve).




Weinberg 1976 - no effect (flux conservation)
APPARENT LUMINOSITIES IN A LOCALLY INHOMOGENEOUS UNIVERSE

STEVEN WEINBERG

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory; and
Department of Physics, Harvard University
Received 1976 A pril 6; revised 1976 May 20

ABSTRACT

Apparent luminosities are considered in a locally inhomogeneous universe, with gravitational
deflection by individual clumps of matter taken into account. It is shown that as long as the clump
radii are sufficiently small, gravitational deflection by the clumps will produce the same average

effect as would be produced if the mass were spread out homogeneously. The conventional formulae
for luminosity distance as a function of redshift consequently remain valid, despite the presence

of any local inhomogeneities of less than galactic dimensions. For clumps of galactic size, the validity
of the conventional formulae depends on the selection procedure used and the redshift of the object
studied.

Subject headings: cosmology — galaxies: redshifts — gravitation




Weinberg's argument (that <magnification> = 1)

telescope
aperture



Seitz, Schneider & Ehlers (1994)

Finally, we have derived an equation for the size of a light beam in a clumpy universe,
relative to the size of a beam which is unaffected by the matter inhomogeneities. If we
require that this second-order differential equation contains only the contribution by
matter clumps as source term, the independent variable is uniquely defined and agrees
with the y-function previously introduced [see SEF, eq.(4.68)] for other reasons. This
relative focusing equation immediately yields the result that a light beam cannot be less

focused than a reference beam which is unaffected by matter inhomogeneities, prior to
the propagation through its first conjugate point. In other words, no source can appear

fainter to the observer than in the case that there are no matter inhomogeneities close

to the line-of-sight to this source, a result previously demonstrated for the case of one
(Schneider 1984) and several (PaperI, Seitz & Schneider 1994) lens planes.




Seitz, Schneider & Ehlers 94

1992). Taking a somewhat different approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D = v/ A obeys the ‘focusing
equation’:

D/D=—(R+Y%). (1)

Here D is the second derivative of D with respect to affine
distance along the bundle; R = Rosk®k” /2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
32 is the squared rate of shear from the integrated effect
of up-beam Weyl focusing — i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,




Kibble & Lieu (2005)

AVERAGE MAGNIFICATION EFFECT OF CLUMPING OF MATTER

T. W. B. KiBBLE
Blackett Laboratory, Imperial College, London SW7 2AZ, UK; kibble@imperial.ac.uk

AND

RicHARD LIEU
Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35899; lieur@cspar.uah.edu
Received 2004 December 9, accepted 2005 June 20

ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average “reciprocal” magnifica-
tion (in one of several possible senses) is precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average “direct” mag-
nification. We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headings: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
oravitational lensinge



Kibble & Lieu 2005

There 1s another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky 1s more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source at random will give on average a smaller
magnification or larger angular-size distance.

« Weinberg: <u> =1 when averaged over sources
» Kibble & Lieu: <1/u> =1 when averaged over directions on the sky
- latter 1s more relevant for CMB observations

« strictly only valid in weak lensing regime



Recent developments...

Backreaction: "have cosmologists erred in failing to take into account the
inherent non-linearity of Einstein's equations?"

« cosmologists tend to do linear theory calculations

 but Einstein's equations (metric <-> matter) are non-linear

 averaging and non-linearity "do not commute"

« SO 1S dark energy a mirage’

requires calculations 1n 2nd order perturbation theory (v. technical)
now mostly accepted that effects are too small to explain acceleration
but maybe there are still interesting percent level effects:

« Clarkson, Ellis++ '12 - large (O(%2)) source magnification

« Clarkson++ '14 - similarly large z-surface area increase
« violates Weinberg's assumption
 "backreaction" strikes back?

« and the size of the effect 1s qualitatively consistent with expectation of the
focusing theorem (Seitz, Schneider & Ehlers)



What is the distance to the CMB?
How relativistic corrections remove the tension with local H; measurements

Chris Clarkson', Obinna Umeh?, Roy Maartens®? and Ruth Durrer*

L Astrophysics, Cosmology € Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
2 Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
* Département de Physique Théorique & Center for Astroparticle Physics,
Université de Geneve, Quai E. Ansermet 24, CH-1211 Geneve 4, Switzerland.

The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




Clarkson et al. 2014

(A) ~ g <<5jj>2> = ;<lﬁl2> , (1.5)

where x is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted

a n

~

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic effect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21|. The extraordinary amplification of aggregated lensing comes mainly

from the integrated lensing of structure on scales in the range 1-100 Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the effect using



NK + Peacock 2015

Weinberg assumes that the area of a surface of constant redshift 1s
unperturbed by lensing by intervening structures

* same assumption 1s made by Kibble & Lieu

« seems reasonable since static lenses do not atfect redshift

* and leads to conservation of e.g. source-averaged flux density
* but not strictly true and breaks down at some level

What is the change 1n the area of the constant-z surface (or cosmic
photosphere) caused by structure?



KP2013: closing the loophole in Weinberg’s argument

Surface of constant distance travelled
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2 effects:
1) wiggly lines don't get as far as straight lines

Estimate from phythagoras

2) wrinkly surface has more area than a smooth one



What 1s the area of a wavy surface?

“ig a-»&mf"‘#/

W >




KP2013: closing the loophole in Weinberg’s argument

Surface of constant distance travelled
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2 effects:
wiggly lines don't get as far as straight lines
wrinkly surface has more area than a smooth one

but both effects are ~(bending angle)2 ~ 106



Key features of KP15 calculation of area of photosphere

 Calculations are rather technical, some key features are:
*  Weak field assumption:
- we model the metric as weak field limit of GR
* but we allow for non-rel motion of sources
- these have negligible effects
- similarly for gravitational waves
- "photons can't surf a gravitational wave"
- going beyond 1st order can be estimated and is tiny effect
* the problem is isomorphic to light propagation in "lumpy glass"
* Boundary conditions:
 Perturbation theory calculations assume photosphere is constant z
« Not true. It is more realistically a surface of constant cosmic time
 Pert. theo. results may be qualitatively OK, but fail quantitatively

 Final result for perturbation to the area of the photosphere is
A0
1
(AA) /Ao = 5 [ dA (2A(X0 — X) + AT (N). where
0
0

= —8 / dyféb(y)/y:%r/kAé(k) dlnk,

— 0

but J = d<02>/dA and JA 1s on the
order of 10-¢



NK + Peacock 2015 - 2nd point

Perturbation to the area 1s on the order of the mean squared cumulative
deflection angle

This 1s a one-part-in-a-million effect
* dominated by large-scale structure

Relativistic perturbation theory, focussing theorem etc. give perturbation
to the distance that 1s on the order of the mean squared convergence

* much larger
- dominated by small-scale structure (possibly divergent)
These large effects are correct, but are purely statistical effects:

* The mean flux magnification | of a source 1s unity
* SO <A!~L>source =0
« but p1s a fluctuating quantity

* so any non-linear function of w (e.g. D/Do =1/ Vv w) will not average to
unity



KP15: Statistical biases...

Example: Source averaged distance bias:

+ D/Do=w!2=(1+Ap2=1-Au/2+3(Aw?8 + ...

Similarly for source averaged mean inverse magnification

¢ <D2/D()2>source — 1 ~+ 4 <%2> + ...

These are the results found from 2nd order perturbation theory

But e.g. the latter 1s not the perturbation to the constant z surface area
« that would be the average over directions rather than over sources

Similarly, Clarkson et al. 2012 claim mean source averaged flux
magnification 1s <pu>=1+<3%2+y2>+ ... =1 + <4u>+ ...

« but this 1s the direction averaged magnification

These come from non-commutativity of averaging and non-linearity

* <f(x)> !=1(<x>) if x 1s a fluctuating quantity

« and have nothing to do with the non-linearity of Einstein's equations



What about the "focusing theorem"? (D)/Do = —(2%) < 0.

We have developed the optical scalar transport equations 1n a form
appropriate when one wishes to specity the metric fluctuations as a
stochastic random field (with zero mean for k=0 component)

» interesting subtlety: one should not assume <OR> =0

 1n inflationary context, small scale space-time curvature fluctuations
have to accommodate themselves within the (flat-space) boundary
conditions imposed when the larger regions accelerate outside of
horizon

We have solved these to obtain the ensemble average of the perturbation
to the area of a beam of specified solid angle fired off from the observer
and propagating back to the source surtace.

Cancellations: Not just "Born level", but 1st "beyond Born" also

We were only able to solve for the case where metric fluctuations are
non-evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <AA/A>=-2J\/3 + ...

» this 1s consistent with the more general result (variable J) found by
more straightforward approach.

An exactly analogous calculation for <AD/D> does not show cancellation

?ing 6esults in much larger (O(®2)) result. But just the statistical bias.



Optical scalars (1in weak-field GR or lumpy glass)

A

r = Vin Geodesic equation

n o= [(1—2¢(r)/c?)/(1 + 26(r)/c?)]*/?

Optical tensor transport equation:
K= (VVx —Kd.)i — Vit Vs — K - K

Optical scalar transport equations:

. V. 2 . -2 2 2

> =({V.V.} -0 — {V.LaV. 7} — 20

Solve for 6

The solution of A/QA = 9()\) = s + AH()\) 1S Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors

A I = dr/dX (arrows). The base of each arrow is labelled by distance
hysical for lum lass, background conformal for perturbed
A=QNexp |2 [ dN A9 (phy py glass, backg P
p ( ) FRW) along the path. Close to the guiding ray the ray vectors
0 will vary linearly with transverse displacement. The optical tensor

K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the



Einstein-Straus '45

* "What is the effect of
expansion of space’

-> Swiss-cheese
Fully non-linear

Droper mass
perturbation does not
average to zero

Need to model metric
erturbations as zero
mean Process




Why there I1Is no Newtonian
packreaction

arxiv:1703.08809



Conventional Framework for Cosmological Dynamics
* Homogeneous background with scale factor a(t)
e a'=-(411/3) G pp a (' = d/dt) Friedmann eg
o Structure (in e.g. N-body calc.) obeys
e X'+ 2(a'/a)x' + Vp /a2 =0 where
e X =r/a(t) are "conformal’ coords, and
e V2 =4 G (p - pp) a2
 No feedback (or "backreaction”) of p on evolution of a(t)
 G.F.R. Ellis (1984...): is this legitimate?

e explored by Buchert & Ehlers '97 plus many others



Racz et al 2017: Modified N-body calculations

* They assume the conventional structure equations:

1.0

e X'+ 2(aa)x' +Vdp/a2=0 RN A
e V24 = 41 G (D - Pb) a2 : AT

* pbutevolve a(t) accordingtoa—-a+aot 2/ = @

0.1
0O 2 4 6 8 10 12 14 16 18
t [Gy]

* with a' obtained by averaging local expansion:<a'/a>
INvoking "separate universe” approximation

o 'Strong backreaction" based on Newtonian physics

* Big effect: a(t) very similar to ACDM concordance model

* ‘concordance cosmology without dark energy’




Racz et al. world view

* 'N-body simulations integrate Newtonian dynamics with a
changing GR metric that is calculated from averaged
quantities”

* ‘changing GR metric". FRW metric: expansion factor a(t)
* a(t) comes from strong-field GR physics

 so we don't really understand it except in highly
idealised (e.g. homogeneous) situations

* hence legitimate to propose alternative ansatz”

e a(t) - the "expansion of space" - affects the small-scale
dynamics of structure



s it legitimate to modity the Friedmann equation?

* Does emergence of structure really "obackreact” on a(t)?

 Can address this in Newtonian gravity. Relevant as:

* Accurate description of the local universe (v << ¢)

* aside from effects from BHSs
* this is where we observe e.g. Ho = 70 km/s/Mpc!

* not Ho ~ 35 km/s/Mpc expected w/o dark energy, Qx
* Atz = 0.1 relativistic corrections ~ 0.01

* |f backreaction is important at > 1% level Newtonian
analysis should show It



Why we might expect backreaction - tidal torques
* Neighbouring structures exert torques on each other

* happens as structures reach 6 ~ 1

e anon-linear (2nd order) effect

e purely Newtonian

* explains spin of galaxies

e can this affect expansion?

e |t does in the local group

* do internal degrees of freedom couple to (i.e.
exchange energy with) universal expansion



Inhomogeneous Newtonian cosmology

Lay down particles on a uniform grid in a big uniformly
expanding sphere (v = Hr)

Perturb the particles off the grid r -> r + or

* plus related velocity perturbations to generate "growing
mode" of structure

g(r) can be decomposed into:

* homogenous field sourced by mean density p

* iInhomogeneous field sourced by 6p (little dipoles)
equations of motions r" = g can be re-scaled

* gives the equations that are solved in N-body codes



Newtonian gravity in re-scaled coordinates

: . ri —r;
N-particles of mass m: ¥ =Gm » | : .

With r = a(t) x for arbitrary a(t)

. a . Gm X — X5 a
X, +2—X; = —3 E 3 — —Xi.
a a’ —~ |x; — x| a
JFu

INitial conditions: x=r/a and x= ((H —a/a)r+6F)/a

Defining n(x) => . 0(x—x;) and on =n—mn

. a. Gm
Xi +2-Xi——
a a

o é | 4rGmn .
/ - a  3a3 "

Exactly equivalent to the usual equations in r-coords

X — X3

d’x on(x)

x — x4/




Newtonian cosmology: x; +2%— " [ iz sn(x) X=X

a a3 Ix — %43

| a 4rGmn
with 1Cs - (g T T 3,3 )Xi-
x=r/a and x=((H —a/a)r+dr)/a

* 3N equations for N particles

* there is No extra equation of motion for a(t)

 But we may choose a(t) to obey Friedmann equation

* an "auxiliary relation’
* (Gives conventional expansion + structure equations

* a(t) suffers no backreaction from structure emergence

* a(t) is just a "book-keeping" factor - no physical effect



Part 1: summary/conclusions

* A different perspective on the conventional equations for
structure growth (Dmietriev & Zel'dovich '63)

* fully non-linear & exact (but Newtonian) description

* a(t) is arbitrary, but extra terms appear in equations of
motion if a(t) does not obey Friedmann's equation

* physical quantities invariant under choice of a(t)

* No coupling of expansion to internal structure via tidal
forques

* can also be understood from scaling with radius/mass



Relation to Buchert & Ehlers '97 "kinematic BR'
Matter modelled as pressure-free Newtonian fluid

* unrealistic, but maybe a usetul "toy model’
Consider a specific volume V = as containing mass M
Raychaudhuri equation (expansion 6, vorticity w, shear o)
e a'/a+ (4m/3) GM/as = Q

e with Q = 2(<62> - <6>2)/3 + 2<w?2-02>

* 2nd order - no linear effect!
Naively a big effect (individual terms in Q ~ Gp)

e but...



Buchert & Ehlers '97

'‘Generalised Friedmann equation™: a'/a + GM/a3 = Q

e Q=2(<62> -<b6>2)/3 + 2<w?-02>

Q=0 is "conspiracy assumption"

But 'Q is a divergence” Q = V-1|dA.(u(V.u)-(u.V)u)
* S0 NO global effect for periodic BCs - "by construction”

No surprise that a"/a = -GM/a3 for an individual region

 fluctuations affect acceleration a’ and M

* put local, not "backreaction of 6p on global expansion’

If <Q>v-- = 0 would imply a conflict - this is not the case



Do B&E claim Newtonian backreaction®

 Q = 0requires ‘conspiracy” - but 'the average motion may be
approximately given by the Friedmann equation on a scale
which Is larger than the largest existing inhomogeneities”

e Later works: E.g. Buchert & Rasanen 2011 review

e "_linear theory ... effect vanishes by construction ... in
Newtonian ... true also in non-perturbative regime”

e "When we impose periodic BCs .... Q is strictly zero”

e but "If backreaction is substantial then current Newtonian
simulations (and analytic studies) are inapplicable”.

e S0 the absence of backreaction is a consequence of
assuming (falsely, one presumes) periodicity.

* How big is Q in reality?



How large is Q = (3 a''/a + 4nGM/an3)7
Q = Q1 + Q2o = V-1J/dA.(u(V.u)-(u.V)u) - (3/2V2)(JdA.u)2

* U is peculiar velocity wrt global H

It structure is a stat. homog. and isotropic random
porocess (i.e. random vector field)

* <Uu(V.u)-(u.Vi)u>ensemole = 0 (Monin and laglom, 1975)
e 50 Q1 is pure fluctuation

e |Q4| ~ <u2>/r2  independent of coherence length A
Second term is systematic: Qo ~ <u2> A2/ r4

Both are very small (<< H?2) for large V




|s there relativistic backreaction?

* Claims: "GR backreaction”is non-zero - and large
e But local universe should be accurately Newtonian
* errors ~ v2/c?2 ? ~1% accuracy within z = 0.1
e and that's where we measure Ho
* 50 very hard to believe there are >> 1% ettects

* Q: Are there even very small effects on expansion history
coming from non-relativistic effects?



s there relativistic backreaction®
Averaging of Einstein equations: G =T

FRW: metric g -> G and T = diag(p, P, P, P) are diagonal
e G=Tand V.T = 0 -> Friedmann equations

with inhomogeneity < G > =< T >7?

e ‘averaging problem”widely discussed in BR literature
what about internal pressure P of clusters?

* or internal pressure in stars, other compact objects
Do those give Friedmann equations with non-zero P?

* and hence deviation from Newtonian expansion law?



Averaging of Einstein equations: <G> =< T >7?

Consider e.qg. stars with internal pressure P

* does that give Friedmann equations with non-zero P?
No. Stars have Schwarzschild exterior with mass m

* space Iintegral of the stress pseudo-tensor

* Includes rest mass, motions, P, binding energy
* putis independent of time
Conservation of stars implies p ~ a3

* which demands P = 0 in the Friedmann eqguations



Relativistic BR from large-scale structure?
Einstein-Straus '45

* "What is the effect of
expansion of space’

-> Swiss-cheese
Fully non-linear

Interesting pertn to
e.g. proper mass

but background
expansion is exactly
unperturbed

small effects on D(z)



Backreaction from inter-galactic pressure
o Stars & DM gjected from galaxies by merging SMBHs

* intergalactic pressure P = n m 0,2
* and P in the background of GWs emitted

* Homogeneous (in conformal coords) pressure is a flux of
energy with non-zero divergence in real space

e Istlaw ... PdV work ....:p' =-(p+P/c2) V' / V

* but a very small effect

* relies on pressure being extended throughout space

* NO effect from internal pressure in bound systems that
are surrounded by empty space



Summary

* A different perspective on the DZ equations. There is no
dynamical equation for a(t). a(t) is arbitrary. But there is
no freedom to modify F-equation w/o changing structure
eqgs. Conventional system of equations is exact.

» Clarification of "generalised Friedmann equation”. Periodic
BCs is not the issue. |Q1| ~ <v2>/r2zand <Q1> = 0 (Monin
and laglom). <Q2> ~ <v2>A2/r4. Both are v. small and tend
to zero for large r.

* Discussion of relativistic backreaction. Averaging of
stress-energy for systems with internal pressure does not
iIntroduce non-zero P in Freidmann equations. Exact non-
inear solutions show no backreaction. Intergalactic P
does backreact, but P is weak and positive.



