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Global picture & motivations
• Some of the “greatest challenges” in theoretical physics:  

- what are Dark Matter and Dark Energy ? 
- how can we develop a quantum theory of gravity and/or unify it with the 
Standard Model of particles ?
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Astronomy & cosmology
(Grav. waves, SNIa, CMB, structure 
formation, galactic dynamics, …)

Quantum 
Gravity

Unification
DM and DE

Local physics
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sans matière noire
observations

High energy
(particle physics: CERN-
LHC, Fermilab, DESY, …)

Picture inspired by Altschul et al, Adv, in Space Res. 55, 501, 2015



Why looking at lab scales?
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What are the impacts of these 
additional fields on local 

experiments?
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Laboratory experiments have several 
advantages
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• Very high accuracy/stability

• Extremely good control over the systematics

• Reproducibility (even by different labs)

• Can easily be optimized to search for specific signatures

• “Affordable”
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One example: UltraLight DM
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Dark Matter can be made out of a bosonic scalar particles

Fig. from US cosmic vision: new idea for Dark Matter, 2017, arXiv:1707:04591



A light scalar Dark Matter model

Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using
Atomic Hyperfine Frequency Comparisons

A. Hees,1,2,* J. Guéna,1,† M. Abgrall,1,‡ S. Bize,1,§ and P. Wolf1,∥
1SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06,
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We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold
atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field
can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum
chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition
frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved
constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to
previous results that were only sensitive to the fine structure constant and improve them by more than an
order of magnitude when only a coupling to electromagnetism is assumed.

DOI: 10.1103/PhysRevLett.117.061301

While thoroughly tested [1], the theory of general
relativity (GR) is currently challenged by theoretical con-
siderations and by galactic and cosmological observations.
Indeed, the development of a quantum theory of gravitation
or of a theory that would unify gravitation with the other
fundamental interactions leads to deviations from GR.
These modifications are usually characterized by the
introduction of new fields in addition to the space-time
metric to model the gravitational interaction. For example,
string theory generically predicts the existence of new
scalar fields (dilaton, moduli, axions). In addition, in the
current cosmological paradigm, some galactic and cosmo-
logical observations are explained by the introduction of
cold dark matter (DM) and of dark energy. Little is
currently known about these two components that con-
stitute the major part of our Universe. They can be
interpreted as new types of matter (although they have
not been directly detected so far), as a modification of the
theory of gravitation, or even as a combination of the two.
The introduction of nonminimally coupled scalar fields

additionally to GR (tensor-scalar theories) generally leads
to a space-time dependence of fundamental constants,
which can then be searched for by experiments that test
the Einstein equivalence principle (EEP) like weak equiv-
alence principle (WEP) tests or tests of local position or
Lorentz invariance (LPI and LLI) [1]. In the past, spec-
troscopy of different atomic transitions has been widely
used to carry out such searches and has set the tightest
limits so far on a possible present-day space-time variation
of fundamental constants [2–14].
Such scalar fields could be a candidate for DM and/or

dark energy. Different cosmological evolutions of the scalar
fields are possible (see, e.g. [15,16]). In several scenarios
(in particular, in the one defined by the action below), a

massive scalar field will oscillate at a frequency related to
its mass, leading to a corresponding oscillation of funda-
mental constants (see, e.g. [17,18]). Recently, atomic
spectroscopy of Dy has been used to constrain such
oscillations [2] of the fine structure constant α. In this
Letter, we present limits on possible oscillations of a linear
combination of constants (α, quark mass, and Λ quantum
chromodynamics—QCD—mass scale) using ≈6 yrs of
highly accurate hyperfine frequency comparison of 87Rb
and 133Cs atoms. This provides complementary constraints
to those from Dy spectroscopy [2] which is sensitive to α
alone. When assuming a variation of α only, our results
improve the limits of [2] by over an order of magnitude.
Tensor-scalar theories of gravitation have been widely

studied as an extension of GR (see, for example [19–23]
and references therein) motivated by unification theories
[15,24–27] or by models of dark energy [28–31].
Moreover, models of a light scalar field coupled to DM
have been proposed [32–36] as well as bosonic models of
DM [37–39]. In this Letter, we focus on a massive scalar
field model of DM parametrized by the action (see, e.g.
[40])

S¼ 1

c

Z
d4x

ffiffiffiffiffiffi−gp

2κ
½R − 2gμν∂μφ∂νφ − VðφÞ%

þ 1

c

Z
d4x

ffiffiffiffiffiffi−gp ½LSMðgμν;ΨÞ þ Lintðgμν;φ;ΨÞ%; ð1Þ

with κ ¼ 8πG=c4 where G is Newton’s constant, R the
curvature scalar of the space-time metric gμν, φ a dimen-
sionless scalar field (the dimensionless scalar field φ is
related to the scalar field ϕ of [2,17] through
φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG=cℏ

p
ϕ ¼

ffiffiffiffiffiffi
4π

p
ϕ=MPl, with MPl the Planck
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• A massive scalar field V (') / m2'2

+Smat [gµ⌫ ,']

• For low masses (< 0.1 eV), it behaves as a classical field and at 
cosmo scales:

• similar to pressureless fluid with

• can produce structure formation if

⇢ / m2'2
0

' = '0 cos


mc2

~ t

�

see e.g. Arvanitaki et al PRD, 2015 or Stadnik and Flambaum, PRL 2015

m > 10�23eV

see e.g. Marsh, Phys. Reports, 2016



Lmat[gµ⌫ , ] = LSM[gµ⌫ , ] + '
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This DM is expected to break the 
equivalence principle
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• An effective Lagrangian for the scalar-matter coupling 

• This leads to a space-time dependance of some constants of Nature to 
the scalar field

see Damour and Donoghue, PRD, 2010

i

• Most usual couplings: linear (cfr Damour-Donoghue) or quadratic (cfr 
Stadnik et al)

2

that can be searched for in measurements: (i) an oscilla-
tory signature, for which atomic sensors are particularly
adapted and (ii) a fifth force, for which UFF measure-
ments are particularly powerful. However, we show that
this situation is dramatically di↵erent in the case of a
quadratic coupling for which no Yukawa solution for the
scalar field is allowed [32]. In that case, the scalar field
exhibits a harmonic behavior whose amplitude can be
enhanced or screened by standard matter, a mechanism
that is similar to the scalarization [33]. This new behav-
ior is fundamentally di↵erent from the one arising with
a linear coupling.

We then use several existing measurements to con-
strain the various coe�cients that parametrize the cou-
pling between the scalar field and standard matter for
both the linear and quadratic couplings. The measure-
ments used in this paper are the ones from torsion bal-
ances [34, 35] and from the MICROSCOPE space exper-
iment [36], as well as from local comparisons of optical
clocks [37] and of atomic clocks [38]. The constraints
obtained in the linear case summarizes existing results
while the constraints obtained in the quadratic case are
new.

First, in Sec. II we thoroughly present the scalar DM
model considered in this paper, as well as the micro-
scopic interaction between the scalar field and matter. In
Sec. III, we detail what are the macroscopic modeling of
observables that derive from the microscopic Lagrangian
introduced in Sec. II. We then discuss the solution for
the scalar field around a spherical body in both the lin-
ear and quadratic cases (in Sec. IV) while the detailed
calculations are developed in Appendix B. The solutions
for the scalar field are then used to derive the observ-
able signatures induced by a violation of the equivalence
principle in Sec. V. Finally, the constraints on the various
parameters that are obtained by using di↵erent experi-
mental data are presented and discussed in Sec. VI.

II. ACTION AND FIELD EQUATIONS

In the present paper, we consider the following action

S =
1

c

Z
d4x

p
�g

2
[R� 2gµ⌫@µ'@⌫'� V (')]

+
1

c

Z
d4x

p
�g

"
LSM[gµ⌫ , i] + Lint[gµ⌫ ,', i]

#
, (1)

with  = 8⇡G/c4, R the Ricci scalar of the space-time
metric gµ⌫ , ' is a dimensionless scalar-field1, LSM is the
Lagrangian density of the Standard Model of particles
depending on the matter fields  , and Lint parametrizes

1 The dimensionless scalar field is related to the scalar field of
[26, 27, 37] by ' = (4⇡G/c~)1/2 � =

p
4⇡�/MPl, with MPl the

Planck mass.

the interaction between matter and the scalar field. In
this communication, we consider linear and quadratic
couplings between matter and the scalar field. Follow-
ing [12, 26, 27], we consider two phenomenological mi-
croscopic modelings for the coupling between scalar and
matter: (i) a linear coupling parametrized by

L
(1)
int = '

"
d(1)e

4e2
F 2

�
d(1)g �3
2g3

�
FA

�2
(2a)

�

X

i=e,u,d

⇣
d(1)mi

+ �mjd
(1)
g

⌘
mi ̄i i

#
,

and (ii) a quadratic coupling parametrized by

L
(2)
int =

'2

2

"
d(2)e

4e2
F 2

�
d(2)g �3
2g3

�
FA

�2
(2b)

�

X

i=e,u,d

⇣
d(2)mi

+ �mjd
(2)
g

⌘
mi ̄i i

#
,

with Fµ⌫ the standard electromagnetic Faraday tensor, e
the electric charge of the electron, FA

µ⌫ the gluon strength
tensor, g3 is the QCD gauge coupling, �3 denotes the
� function for the running of g3, mj the mass of the
fermions (electron and light quarks 2), �mj the anomalous
dimension giving the energy running of the masses of the
QCD coupled fermions and  j the fermions spinors. The

constants d(i)j characterize the interaction between the
dilaton scalar field ' and di↵erent matter sectors: it leads
to the following e↵ective dependency of five constants of
Nature

↵(') = ↵

✓
1 + d(i)e

'i

i

◆
, (3a)

mj(') = mj

✓
1 + d(i)mj

'i

i

◆
for j = e, u, d (3b)

⇤3(') = ⇤3

✓
1 + d(i)g

'i

i

◆
, (3c)

where ↵ is the fine structure constant, mj are the
fermions (electron and quarks up, down and strange)
masses, ⇤3 is the QCD mass scale ⇤3 to the dilaton
(see [27]) and the subscripts (i) indicate the type of
coupling considered (linear for i = 1 and quadratic for
i = 2). Note that, following Damour and Donoghue
[26, 27], we considere preferably the mean quark mass
m̂ = (mu +md) /2 3, which depends also on the scalar

2 Following the most recent literature [ref], we do not take into
account the e↵ects of the strange quark, although they have been
estimated and considered in the past for the tests of the local
position invariance (see for instance [39, 40]).

3 Besides, note that the assumption mu = md is often used in
the nuclear physics calculations that must be used in order to
infer the violation of the LPI phenomenology [ref]. Therefore,
in the present paper, one implicitely has m̂ = mu = md when
considering the violations of the LPI.

A signature of a violation of the Einstein Equivalence Principle that 
can be searched with atomic clocks!

'i

i



Violation of the EEP can be searched 
with atomic sensors
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• use of more than 8 years of Cs/Rb FO2 atomic fountain data from 
SYRTE: high accuracy and high stability

• Search for a periodic signal in the data

A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, PRL, 2016

using Scargle’s method, see Scargle ApJ, 1982

No positive detection

see J. Guéna et al, Metrologia, 2012 and J. Guéna et al., IEEE UFFC, 2012



Constraints on the linear couplings
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Lmat[gµ⌫ , ] = LSM[gµ⌫ , ] + '
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The phenomenology for the quadratic 
coupling is richer
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see A. Hees et al, PRD, 2018
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FA
µ⌫F
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A �
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• Rich phenomenology: 
scalarization / screening

'2contribute as ∼ GMA
c2r ≪ 1 and by terms that are proportional

to φ2
0 (φ0 being the typical amplitude of the scalar field).

If the scalar field is associated with the local galactic
DM abundance, one can show that φ0 ∼ 7 × 10−31 eV=m φ

[43,44], which shows that φ2
0 ≪ 1 for scalar field masses

above 10−30 eV. Under this assumption, the space-time
behavior of the scalar field will be governed by Eq. (18),
whose solution will be given in this section. Nevertheless,
the explicit limit at which this assumption breaks down has
been carefully taken into account when deriving the
constraints on the parameters di in Sec. VI.

A. Linear coupling

In the case of a linear coupling, the function αAðφÞ ¼
α̃ð1ÞA appearing in Eq. (18) is independent of the scalar field,
and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix C. The general expression of the scalar field is
given by

φð1Þðt; xÞ ¼ φ0 cos ðk:x−ωt þ δÞ−sð1ÞA
GMA

c2r
e−r=λφ ; ð19Þ

where jkj2 þ c2m 2
φ=ℏ2 ¼ ω2=c2 and

λφ ¼ ℏ
cm φ

ð20Þ

is the reduced Compton wavelength of the scalar field. The
constant sð1ÞA is the effective scalar charge of the extended
body and is given by

sð1ÞA ¼ α̃ð1ÞA I
!
RA

λφ

"
; ð21Þ

with the function IðxÞ given by

IðxÞ ¼ 3
x cosh x−sinh x

x3
:

Note that this result, valid only for a homogeneous sphere,
is generalized to a two-layer sphere in Appendix C. The
only difference is related to the expression of the effective
scalar charge sA, which would be given by Eq. (C16).

B. Quadratic coupling

In the case of a quadratic coupling, the function αAðφÞ ¼
α̃ð2ÞA φ that appears in the Klein-Gordon equation (18) is now
linear in φ. This linear dependency changes drastically the
form of the solution. In particular, in the classical limit, it is
easy to show that there exists no static solution beyond the

trivial one.4 The time-dependent solution contains several
modes, but only one is nonvanishing at infinity and can
be interpreted as DM (see Appendix C for details). Its
expression is given by

φð2Þðt; xÞ ¼ φ0 cos
!
m φc2

ℏ
t þ δ

"#
1−sð2ÞA

GMA

c2r

$
; ð22Þ

with the effective scalar charge

sð2ÞA ¼ α̃ð2ÞA Jsign½α̃ð2ÞA &

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jα̃ð2ÞA jGMA

c2RA

s !

; ð23Þ

which depends on the sign of α̃ð2ÞA through

Jþ ðxÞ ¼ 3
x−tanh x

x3
; ð24aÞ

J−ðxÞ ¼ 3
tan x−x

x3
: ð24bÞ

Jþ corresponds to the cases such that α̃ð2ÞA > 0, while J−
corresponds to the cases such that α̃ð2ÞA < 0. In the limit of
weak gravitational fields and small coupling constants (i.e.,
x ≪ 1), J' ðxÞ≈1 and sð2ÞA ≈α̃ð2ÞA . In this case, note that the
expression of the scalar field is similar to the one derived
in Ref. [37]. The behavior of the scalar field around a
body A—through the effective scalar charge sð2ÞA —depends
only on the dimensionless parameter

εA ¼ α̃ð2ÞA
GMA

c2RA
; ð25Þ

as illustrated in Fig. 1.
In particular, the sign of α̃ð2ÞA (or of εA) plays an important

role, and two different nonlinear mechanisms can arise:
a screening mechanism for εA > 0 and an amplification
mechanism for εA < 0 (see Figs. 1 and 2). This behavior is
similar to that arising for massless scalar fields, for which
both amplification and deamplification nonpertubative
mechanisms have been studied since the seminal work
of Damour and Esposito-Farèse [38]. In particular, in
metric theories, the amplification mechanism for α̃ð2ÞA <0
has been known as the scalarization of compact objects.
For positive values of the coupling coefficient α̃ð2ÞA > 0

and for very large couplings (εA ≫ 1), one gets Jþ ðxÞ≈
3=x2. In that case, sð2ÞA ≈RAc2

GMA
, and the scalar field at the

4Quantum one-loop corrections are expected to produce an
additional 1=r3 potential at distances 2m φr ≪ 1; see, e.g.,
Ref. [48].

VIOLATION OF THE EQUIVALENCE PRINCIPLE FROM … PHYS. REV. D 98, 064051 (2018)

064051-5

surface of the body [r ¼ RA in Eq. (22)] tends to vanish.
Indeed, the scalar field solution in that limit reduces to

φð2Þðt; xÞ ¼ φ0 cos
!
m φc2

ℏ
t þ δ

"!
1 −

RA

r

"
: ð26Þ

Similarly, the interior solution tends to 0 when the coupling
constant increases (see Sec. II of Appendix C for its
expression, and see the top of Fig. 2). This means that
the scalar field only penetrates a thin shell at the surface of
the body. A detailed analysis of the interior solution given
by Eq. (C24) shows that the typical length over which
the field is not constant inside the body is given by

l ∼ RA=ð3α̃
ð2Þ
A GMA=c2=RAÞ

1=2. Figure 2 illustrates this
behavior, which has similarities with the chameleon
mechanism [53]. Conceptually, the situation can be com-
pared to the case of an insulator located in an external
electric field: the electric field inside and at the surface will
vanish. This property has an interesting consequence:
experiments located at the surface of the Earth are less
suitable to detect or constrain such a scalar field in this
regime, while space-based experiments are better suited.
On the other hand, for the cases where α̃ð2ÞA < 0, the

scalar field diverges in the limit where jα̃ð2ÞA j GMA
c2RA

→ π2
12, as

illustrated in the bottom of Fig. 2 and in Fig. 1. The
Minkowskian approximation used to solve for the scalar
field breaks down when φ ∼ 1 (see the beginning of
Sec. IV). For couplings that lead to φ > 1, one needs to
self-consistently solve numerically all of the field equa-
tions, including the backreaction from the metric, in order
to fully take into account nonlinear behavior.
On top of that, when dð2Þi φ2=2 < −1, the fundamental

constants from Eq. (3) would change their sign, which
would be an unacceptable behavior.
The amplification mechanism for α̃ð2ÞA < 0 in metric

theories has been known as the scalarization of compact
objects [38]. It is a fully nonperturbative effect that requires
us to solve for both the scalar and the metric field equations
numerically. Recently, several works extended the work
from Ref. [38] to the case of massive scalar fields [54–58].
However, those studies only focus on stationary solutions
of the field equations, preventing them from finding
oscillating dark-matter candidate solutions to the problem.
The solutions presented in this section, although only valid
for weak gravitational fields, indicate that a nonstationary
scalarization may also occur for light scalar DM. In other
words, DM as a light scalar field may also lead to a
potential scalarization of compact objects. A detailed
investigation of such effects which would include the
nonpertubative resolution of the scalar and the metric field
equations without the stationarity assumption is beyond the
scope of this paper.

C. Identification as dark matter

In order to identify the scalar field as DM, one has to
consider its asymptotical behavior. For both solutions
computed in the previous section, the scalar field oscillates
at spatial infinity. It can be shown that this scalar field gives
rise to the following cosmological energy density ρφ and
pressure pφ:

ρφ ¼ c2

8πG

#
_φ2 þ c2VðφÞ

2

$
;

pφ ¼ c2

8πG

#
_φ2 −

c2VðφÞ
2

$
:

FIG. 2. Evolution of the scalar field around a homogeneous
spherically symmetric body. The different curves show the impact
of the values of α̃ð2Þ. In particular, in the limit of large positive
couplings, the scalar field tends to vanish inside the body, and the
scalar field diverges for negative values of α̃ð2Þ.

FIG. 1. Evolution of the effective scalar charge sð2ÞA that appears
in the solution of the scalar field from Eq. (22) as a function of εA
from Eq. (25). For large positive values of εA, a deamplification
mechanism occurs, and the scalar field at the surface of the body
tends to vanish. On the other hand, for negative values of εA, the
scalar field is amplified, which leads to nonperturbative effects.

HEES, MINAZZOLI, SAVALLE, STADNIK, and WOLF PHYS. REV. D 98, 064051 (2018)

064051-6



Constraints on the quadratic couplings
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See A. Hees et al, PRD, 2018

Lmat[gµ⌫ , ] = LSM[gµ⌫ , ] + '

2

4 de
4e2

Fµ⌫F
µ⌫ � dg�3

2g3
FA
µ⌫F

µ⌫
A �

X

i=e,u,d

(dmi + �midg)mi ̄i ̄i

3

5'2

phenomenology comes from the presence of the J!ðxÞ
factor in the expression of the effective scalar charge sð2ÞA in
Eq. (23). First of all, as discussed in Sec. IV B, the behavior
of the effective scalar charge is significantly different for
positive and negative couplings (this is illustrated in Fig. 1).
In particular, for large positive couplings dð2Þi , a screen-

ing mechanism occurs: the amplitude of the oscillations of
the scalar field at the surface of the central body decreases,
lowering the sensitivity of any measurement. This kind
of effect occurs when εA ∼ di½Qi%A

GMA
c2RA

∼ 1, which corre-

sponds to the case where the sð2ÞA
GMA
c2r part of the scalar field

solution from Eq. (22) starts to become relevant. This
deamplification mechanism discussed in Sec. IV B makes
the scalar field hard to detect and constrain for large scalar
field masses, as can be seen in Fig. 4.
On the other hand, the case of large negative couplings

dð2Þi < 0 is characterized by an amplification of the scalar
field (see Figs. 1 and 2) that increases the amplitude of
observables, which makes DM easier to either detect or

constrain. As mentioned in Sec. IV B, at some point when
the scalar field becomes too large, the approximation used
in this work breaks down. In particular, the development
done in Refs. [31,32] requires that diφ2=2 < 1 so that the
variation of the constants of nature from Eq. (3) can be
treated perturbatively. Moreover, the limit diφ2=2 ¼ −1
would naively imply a change of the sign of the constants of
nature, an undesirable behavior. This limit—where the
approximation used in this work breaks down, and where
the constants of nature would change their sign—is
indicated in Fig. 4 by a shaded green area. A full under-
standing of the behavior for large negative couplings
requires us to extend the work of Refs. [31,32] at the
nonperturbative level and to solve the full relativistic field
equations nonperturbatively (as discussed in Sec. IV B).
In Fig. 4, clock measurements from Refs. [43,44] have

been transformed into constraints on the dð2Þi coefficients.
In order to do so, the published constraints on dð1Þi need to
be transformed into a constraint on the amplitude Aω of an
oscillation that has been constrained from the data by using

FIG. 4. Upper and lower (MRA) limits (at 95% confidence level) on the various scalar/matter coupling coefficients dð2Þi in the case of a
quadratic coupling between matter and the scalar field. The constraints have been derived using the following measurements: the
SYRTE Cs/Rb data from Ref. [44], the Dy measurements from Ref. [43], the UFF measurement around Earth between Be and Ti from
Ref. [40], and the MICROSCOPE result presented in Ref. [42]. Note that the dashed line is not an actual constraint but an estimate of the
potential sensitivity that would be obtained by searching for an oscillating violation of the UFF within MICROSCOPE data. The lower
green shaded area represents the limits for which jdiφ2=2j ∼ 1, where the Minkowskian approximation used in this work breaks down
and where the constants of nature from Eq. (3) would naively experience a change of sign.

VIOLATION OF THE EQUIVALENCE PRINCIPLE FROM … PHYS. REV. D 98, 064051 (2018)
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• Similar results obtained for 
the other couplings
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• Frequencies of the clocks will 
change when topological 
defaults cross the Earth

LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3137
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Figure 1 | Concept of a dark-matter search using atomic clocks. By
monitoring time discrepancies between two spatially separated clocks one
could search for the passage of topological defects, such as the domain wall
pictured here.

paper, we will be interested in a more general form of the SM–TD
interaction, in the form of the quadratic scalar portal,

�Lint =�2

 
me ̄e e

⇤2
e

+ mp ̄p p

⇤2
p

� 1
4⇤2

�

F 2
µ⌫ +·· ·

!
(2)

!me�
e,p =me,p

 
1+ �2

⇤2
e,p

!
; ↵e� = ↵

1��2/⇤2
�

Because inside the TD, by assumption, �2 ! A2 and outside
�2 !0, this portal renormalizes masses and couplings only when
the TD core overlaps with the quantum device. Here me,p and
 e,p are electron and proton masses and fields, and Fµ⌫ are
electromagnetic tensor components. The appearance of high-
energy scales ⇤X in the denominators of (2) signifies the e�ective
nature of these operators, implying that at these scales the scalar
portals will be replaced by some unspecified fundamental theory
(in the same way as the electroweak theory of the SM replaces
the e�ective four-fermion weak interaction at the electroweak
scale). The SM field dependence in (2) replicates corresponding
pieces from the SM sector Lagrangian density, thus leading to the
identification (the second line of equation (2)) of how masses and
the fine-structure constant ↵ are modulated by the TD. Thus, for
every coupling constant and SM particle mass scale X one has,
to first order in �2,

�X
X

= �2

⇤2
X

A quadratic (as opposed to linear) dependence on � leads to
weakening of the constraints imposed by precision tests of
gravitational interactions10. Both direct laboratory and astrophysical
constraints on ⇤X do not exceed ⇠10 TeV. Further background
information on TDM, the types of interaction with the SM,
and plausible scenarios for its abundance are provided in the
Supplementary Information. In particular, we present an explicit
example of the so-called Abrikosov–Nielsen–Olesen string
defect11,12, with an increased value of ↵ inside its core.

The main consequence of the interaction (2) is a temporary shift
of all masses and frequencies inside the TD. Thus, the signature we
are proposing to search for is a transient variation of fundamental
constants. In the limit of large ⌧ , when the size of a TD is on
astronomical scales, the e�ect of (2) becomes identical to variations
of couplings and masses over time with ↵̇ ' constant, in which
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Figure 2 | E�ect of a monopole-type defect on atomic clocks. Simulated
response of an Earth-scale constellation of atomic clocks to a 0D
Gaussian-profiled topological defect (monopole) of e�ective radius 0.75R�.
The monopole centre is displaced from the collision axis by 0.2R�. Earth’s
centre and the clocks lie in the collision plane. The polar angles of the three
clocks are ⇡/2, ⇡ , �⇡/4 in a reference frame centred at the Earth’s centre.

case all the existing terrestrial constraints immediately apply4. In
addition, during the TD crossing there is a new force acting on
massive bodies, giving a transient signature that can be explored
with sensitive graviometers. Also, there are other ways of coupling
TDs to the SM, such as the so-called axionic portals, @µ�/fa ⇥ Jµ,
where Jµ is the axial-vector current. This would lead to a transient
‘loss’ of rotational/Lorentz invariance, and can be searched for
with sensitive atomic magnetometers13,14. By design, atomic clocks
are less sensitive to the coupling to spin, and for that reason we
concentrate on (2).

Clocks tell the time by counting the number of oscillations
and multiplying this by a predefined period of oscillation,
1/(2⇡!0), where !0 is the fixed unperturbed clock frequency. The
experimentally relevant quantity is the total phase accumulated
by the quantum oscillator, �0(t) =

R t
0 !0dt 0; then apparently

the device time reading is �0(t)/!0. A TD would shift the
oscillator frequency and thereby a�ect the phase or the time
reading, �(t)=

R t
0 (!0 +�!(t 0))dt 0, where �!(t 0) is the variation in

quantum oscillator frequency caused by the TD. We parameterize
�!(t)=gf (t), where g / A2/⇤2 is the coupling strength and
f (t)/ |�(r�vgt)|2 is a time-dependent envelope (r is the clock
position), so that

R 1
�1 �!(t 0)dt 0 =g⌧ .

Suppose we compare the phases of two identical clocks separated
by a distance l (see Fig. 1), which encounter a domain-wall-type TD.
Because the TD propagates through the network with a speed vg,
the second clock would be a�ected by the TD at a later time, with
a time delay l/vg. Formally, the phase di�erence (or apparent time
discrepancy1t) between the clocks reads

1'(t)=g
Z t

�1
(f (t 0 � l/vg)� f (t 0))dt 0 ⌘!01t(t)

By monitoring the correlated time di�erence 1t(t) between the
two clocks, one could search for TDM. Before the arrival of the
TD at the first clock, the phase di�erence is zero, as the clocks
are synchronized. As the TD passes the first clock, it picks an
additional phase di�erence |1'|max =|g |d/vg. 1'(t) stays at that
level while the TD travels between the two clocks. Finally, as the
TD sweeps through the second clock, the phase di�erence vanishes.
In this illustration we assumed that d⌧ l⌧L. In the limit of d . l,
frequency (instead of time) comparison can be more accurate.

934 NATURE PHYSICS | VOL 10 | DECEMBER 2014 | www.nature.com/naturephysics
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• Topological defect: carry 
energy and can be a DM 
candidate
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• Fiber network: high accuracy long-
distance clocks comparison

• Different clocks: Hg/Sr/Yb
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⇠ Days – weeks synchronous
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High sensitivity: limited only by clocks themselves

Sr-Sr: �!/! ⇠ 3⇥ 10�17 at 1000s

“Long” observation time + Good for large objects

• Lisdat et al. (PTB, LNE-SYRTE), Nature Commun. 7, 12443 (2016).
• Delva et al. (PTB, SYRTE, NPL, ..), Phys. Rev. Lett. 118, 221102 (2017).

10 / 15

Work by Benjamin Roberts @SYRTE

ACES
October 2018
B. M. Roberts

Outline

Ultralight DM +
TDs

GPS

Discovery
frontiers

Asymmetry &
ann. modulation

Conclusion

Size (field-mass)

• Lines: Sr/Hg/Yb optical network simulation

• Simulated 1 month of data (randomly generated noise noise)

5

6

7

8

9

10

11

2 3 4 5 6 7

�16�15�14�13�12

5

6

7

8

9

10

11

2 3 4 5 6 7
5

6

7

8

9

10

11
�16�15�14�13�12

lo
g 1

0
⇤
↵
/T

eV

log10 d/km

log10 m�/eV

This work
Wcisło et al. (2018)
Wcisło et al. (2016)

GPS (2017)

5

6

7

8

9

10

11

2 3 4 5 6 7

�16�15�14�13�12

T = 1hr

lo
g 1

0
⇤
↵
/T

eV

log10 d/km

log10 m�/eV

5

6

7

8

9

10

11

2 3 4 5 6 7
5

6

7

8

9

10

11
�16�15�14�13�12

T = 100hr

Large size (low mass)

Require tracking signal over time (>minutes)

Homogeneous network: Clocks far apart

Or, networks of clocks with di↵erent KX

11 / 15

• Simulations show that this dataset 
is very promising

• Data analysis on-going
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• Screening mechanism: deviations from GR “hidden” in the 
Solar System �PPN ⇡ 1

• “This mechanism, if efficient to hide the effects of the scalar field at short 
distance and in the static approximation can in general not alter the 
cosmological time evolution of the scalar field”

Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from
Bounds on the Time Variation of G

Eugeny Babichev,1,2 Cédric Deffayet,2,3 and Gilles Esposito-Farèse3

1Laboratoire de Physique Théorique d’Orsay, Bâtiment 210, Université Paris-Sud 11, F-91405 Orsay Cedex, France
2AstroParticule & Cosmologie, UMR 7164-CNRS, Université Denis Diderot-Paris 7, CEA, Observatoire de Paris,
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We show that the current bounds on the time variation of the Newton constant G can put severe

constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal

matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening

mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short

distance and in the static approximation, can in general not alter the cosmological time evolution of the

scalar field. This results in a locally measured time variation of G which is too large when the matter-

scalar coupling is of order one.

DOI: 10.1103/PhysRevLett.107.251102 PACS numbers: 04.50.Kd, 98.80.!k

Many theories in which gravity is modified with respect
to general relativity (GR) contain, in addition to the metric,
a scalar field which is coupled directly to matter. Such
scalar-tensor theories appear naturally in low energy limits
of string theory and are also obtained from phenomeno-
logical brane-world constructions (such as the DGP model
[1]). Some are also of current interest as able to produce an
interesting cosmology via a large distance modification of
gravity. In such theories, in contrast to GR, matter not only
interacts via the helicity-2 graviton, but also via the ex-
change of the scalar field. In general, one faces the follow-
ing dilemma: Either this field is coupled to matter with
gravitational strength, as required to produce order one
deviations from GR, but then the theory cannot pass local
tests of gravity, or the coupling is very small, but then there
are no significant effects of the scalar. A canonical example
is the Brans-Dicke theory [2,3] and its extensions [4]
whose parameters are tightly constrained by the local tests
of gravity and observations of binary pulsars (see for
instance [5]).

Away out of this dilemma is provided by the Vainshtein
mechanism, first proposed in the context of massive gravity
[6,7] (a proof was recently provided in [8]). Indeed, close
to localized bodies, this allows us to screen effects which
lead to large deviations from GR at large distances. This
mechanism was also shown to be present in the DGP brane
model [1] as well as its decoupling limit [9]. It was later
generalized and shown to apply to a large class of scalar-
tensor models, called in [10] ‘‘k-mouflage’’ gravitymodels,
with a nonlinear kinetic self-interaction of a scalar field
providing a self-screening of the scalar force à laVainshtein
(hence the name k-mouflage). This class contains, in par-
ticular, the Galileon model [11], and its covariantized ver-
sions [12– 15]. Many applications of the Galileon model

and its extensions to the late-time acceleration, including
minimally coupled [16– 19] as well as nonminimally
coupled models [20– 22], have been considered, while vari-
ous constraints coming from cosmology as well as from
local observations have been studied [17,19,23– 25].
In this Letter, we point out that in spite of the fact that

the Vainshtein screening indeed allows us to pass most of
the constraints coming from local observations by cutting
off the spatial variation of the scalar field near massive
bodies, the tests on the constancy of the Newton constant
may easily rule out many models. Indeed, we show that in
many shift-symmetric models, the evolution with time of
the scalar field is (approximately) the same everywhere and
it follows its cosmological behavior. If the scalar is directly
coupled to matter, this induces a variation of the Newton
constant G, which is tightly constrained by a number of
observations (see, e.g., the review [26]). The most stringent
bounds come from binary-pulsar data [27] and above all
Lunar Laser Ranging experiments [28], the latter giving
j _G=Gj< 1:3" 10!12 yr!1, or in terms of the Hubble
value today, H0, j _G=Gj< 0:02H0. As we will see below,
the time variation of the scalar field is generically of order
of the Hubble scale H0 (unless it is in the ‘‘cosmological’’
screening regime with a tiny energy scale M # H0). This,
whenever the direct coupling of the scalar field to matter is
of order 1, induces a too large variation of Newton’s
constant, j _G=Gj$H0.
We consider the following general action,

S¼M2
P

2

Z
d4x

ffiffiffiffiffiffiffi!g
p ðR þ Ls þ LNLÞ þ Sm ½~g!";c m *; (1)

where R is the Ricci scalar of the metric g!", Ls ¼
!ð@’Þ2 is the standard kinetic term of a scalar field ’
(normalized to be dimensionless), LNL describes some
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ASTROPHYSICS

Atom-interferometry constraints on
dark energy
P. Hamilton,1* M. Jaffe,1 P. Haslinger,1 Q. Simmons,1 H. Müller,1,2† J. Khoury3

If dark energy, which drives the accelerated expansion of the universe, consists of a light
scalar field, itmight be detectable as a “fifth force” between normal-matter objects, in potential
conflict with precision tests of gravity. Chameleon fields and other theories with screening
mechanisms, however, can evade these tests by suppressing the forces in regions of high
density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical
mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing
the fieldwith individual atoms rather thanwith bulkmatter. We therebyconstrained awide class
of dark energy theories, including a range of chameleon and other theories that reproduce
the observed cosmic acceleration.

C
osmological observations have firmly estab-
lished that the universe is expanding at an
accelerating pace, which can be explained
by dark energy permeating all of space and
accounting for ∼70% of the energy density

of the universe (1). What constitutes dark energy,
and why it has its particular density, remain as
some of the most pressing open questions in
physics. What is clear is that dark energy pres-
ents us with a new energy scale, on the order of
milli–electron volts. It is reasonable to spec-
ulate that new (usually scalar) fields might be
associated with this scale and that these may
make up all or part of the dark energy density
(2, 3). String theory with “compactified” extra
dimensions, for instance, features a plethora of
scalar fields, which typically couple directly to
matter fields unless protected by a shift sym-
metry, as for axions (4, 5). If the fields are light,
this coupling would be observable as a “fifth
force,” in potential conflict with precision tests
of gravity (6).
Theories with so-called screeningmechanisms,

on the other hand, have features that suppress
their effects in regions of high density, so that
theymay couple to matter but nonetheless evade
experimental constraints (7). One prominent ex-
ample is the chameleon field, the mass of which
depends on the ambient matter density (8, 9).
It is light and mediates a long-range force in
sparse environments, such as the cosmos, but it
becomes massive and thus short-ranged in a
high-density environment, such as the labora-
tory (fig. S1). This makes it difficult to detect
with fifth-force experiments.
Burrage and co-workers (10) recently proposed

using atom interferometers (11, 12) to search for
chameleons. An ultrahigh-vacuum chamber con-

taining atomic test particles simulates the low-
density conditions of empty space, liberating
the chameleon field to become long-ranged
and thus measurable. In this study, we used a
cavity-based atom interferometer (13, 14), mea-
suring the force between cesium-133 atoms
and an aluminum sphere to search for a range of
screened dark energy theories that can repro-
duce the estimated cosmological dark energy
density (Fig. 1, A and B).
The chameleon dark energy field f in equilib-

rium is determined by minimizing a potential
density V(f) + Vint, which is the sum of a self-
interaction termV(f) anda termVint describing the
interaction with ordinary matter. The simplest
chameleon theories are characterized by two
parameters that have the dimension of mass.

The first one, L, enters the self-interaction po-
tential term (15, 16)

V ðfÞ ¼ L4eL
n=fn ≃ L4 þ L4þn

fn
þ… ð1Þ

The term proportional to 1/fn, where n is a
real exponent often taken to be 1, leads to
screening, whereas the constant term is respon-
sible for the chameleon’s energy density in
otherwise empty space. It can drive the cosmic
acceleration observed today ifL = L0 ≈ 2.4 meV,
given by the current dark energy density of 7 ×
10−27 kg/m3, which is roughly the mass of four
hydrogen atoms per cubic meter. The second
parameter, M, enters the term for interaction
with ordinary matter of density r (again using
natural units)

Vint ¼
fr
M

ð2Þ

The parameter M is essentially unconstrained
but plausibly below the reduced Planck mass
MPl = (ℏc/8pG)1/2 ≈ 2.4×1018 GeV/c2. A lower
bound, M > 104 GeV/c2, was derived from
hydrogen spectroscopy (17).
Existing experimental bounds for M < MPl

come from oscillations of rubidium atoms in a
harmonic trap (18) and from ultracold neutrons
(19, 20). Limits from astrophysical observations
(7) and torsion balances (6, 21) are available for
M ≈ MPl, where the chameleon is unscreened.
Experiments such as the Chameleon Afterglow
Search [CHASE (22)], the Axion Dark Matter
Experiment [ADMX (23)], and the CERN Axion
Solar Telescope [CAST (24)] place bounds, given
an additional coupling of the chameleon to the
photon. Our limits do not depend on such extra
couplings.
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Fig. 1. Screened fields in our experiment. (A) The vacuum chamber (radius, 5 cm; pressure, ~6 × 10−10

Torr; mostly hydrogen) holds a pair of mirrors forming a Fabry-Perot cavity and the aluminum source sphere.
Laser beams pass through a 1.5-mm-radius hole in the sphere (radius of the sphere, 9.5 mm). AMach-Zehnder
interferometer is formed using cold cesium atoms from a magneto-optical trap at an effective distance
of 8.8 mm from the sphere surface (not shown). (B) Photons in three flashes of laser radiation that are
resonant in the cavity impart momentum to the atoms, directing each atomic matter wave onto two paths.
(C) The potential generated by a macroscopic sphere as a function of distance from the sphere’s center.
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boosting sensitivity. With modest improvements, chameleon 
fields at the cosmological energy density will be either 
discovered or completely ruled out. This also will enable study 

of novel quantum phenomena such as the gravitational 
Aharonov-Bohm effect13, and provide even better resolution of 
atom – source mass interaction.

Figure 3 | Constraints on screened scalar fields. A) Chameleon field: The shaded areas in the M-Λ plane are ruled out at the 95% 
confidence level. MPl/M gives the coupling strength to normal matter in relation to gravity; Λ= Λ0≈2.4 meV (indicated by the black 
line) could drive cosmic acceleration today.  A comparison is made to previous experiments: neutron interferometry28 / neutron 
gravity resonance29, microsphere force sensing30, and  torsion balance1,27. B) Chameleon limits in the n-βcham plane with Λ=Λ0, 
showing the narrowing gap in which basic chameleon theories could remain viable. n is the power law index describing the shape 
of the chameleon potential; βcham ≡ MPl/M is the strength of the matter coupling. C) Symmetron fields: Constraints by atom 
interferometry complement those from torsion pendulum experiments11 (shown with μ = 0.1 meV) for the range of μ considered. 
For μ < 10-1.5 meV, the field vanishes entirely inside the vacuum (see Methods), leaving this parameter space unconstrained. The 
same effect produces the sharp cutoff in our limits at low MS.
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• Screening mechanism: explain cosmic expansion while hiding 
the scalar field in region of “high density”

with

Khoury and Weltmann, PRL and PRD, 2004
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DE
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from Martins et al, JCAP 08, 47, 2015
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Figure 3. One, two and three sigma constraints on the ζ − w0 plane for the model of Slepian et al.

[37], from Webb et al. data (top left panel), Table 1 data (top right panel) and the atomic clock bound
(bottom panel). In each panel the thin red lines correspond to the constraints from the astrophysical
or clock data alone, the blue vertical ones correspond to the cosmological data (which constrain w0

but are insensitive to ζ) and the black thick lines correspond to the combined datasets.

fit. The full dataset allows us to obtain a non-trivial constraint on ζ. At the two-sigma
(95.4%) confidence level we find

|ζSGZ| < 5.6× 10−6 , (4.3)

which leads to a constraint on WEP violations

ηSGZ < 3.1 × 10−14 . (4.4)

These constraints are very slightly weaker than those obtained in [16] for the constant equa-
tion of state model (cf. Eqs. 1.1 and 2.10 respectively). Physically, the reason for this is that
in a thawing model with a given w0 the amount of α variation at a given non-zero redshift
will be slightly smaller than that in a constant equation of state model with the same w0. In
any case, our indirect WEP bound is still stronger than the available direct bounds, cf. Eqs.
3.4-3.5.
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Constraints on DE in a specific model

 18

• Combining cosmological data with clocks (1-2-3𝜎 conf. level)

from Martins et al, JCAP 08, 47, 2015

• Considered to model Dark Energy. The DE equation of state 
is characterized by 
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