SUGAR: A New Model of Type la Supernovae for Cosmological Analyses

Pierre-François Léget Laboratoire de Physique Nucléaire et des Hautes Énergies

SNIa are standard candle

Stretch effect: Intrinsic variability

- Related to the explosion physics
- Masse of progenitor
- Quantity of ⁵⁶Ni
- Known since the 70's:

β (Pskovskii 1977)
ΔM₁₅ (Philips 1993)
X₁ (Guy el al. 2007)

Color: extrinsic properties

- Mainly extinction due to host dust
- Become more red
- Can be accompanied by ISM absorption line of sodium
- Known since the 90's

K-correction

Stretch & color: Measured on light curves with photometric survey

Need a SNIa model to take into account redshift effect

SALT2 (Guy et al. 2007):

$F(t;\lambda) = X_0 \left[S_0(t;\lambda) + X_1 S_1(t;\lambda) \right] \times \exp \left[C \times CL(\lambda) \right]$

X₀: Correlated to redshift

- X_I: Stretch effect, associated with intrinsic variability
- C: Color effect, which adjusts the global SNIa color (intrinsic and extrinsic color)

Standardisation

Without any correction

Standardisation

Stretch and color corrected

Standardisation

remaining dispersion not explained by the noise variance, and other problems...

Stretch and color corrected

Host properties

- Dependency of Hubble residuals after standardisation with Host mass
- Correlated to local Host properties
- Bias in the cosmology analysis: Host mass added to standardise SNIa

Betoule & al. 2014

Host properties

- Dependency of Hubble residuals after standardisation with Host mass
- Correlated to local Host properties
- Bias in the cosmology analysis: Host mass added to standardise SNIa

Betoule & al. 2014

Roman & al. 2017

Host properties

- Dependency of Hubble residuals after standardisation with Host mass
- Correlated to local Host properties
- Bias in the cosmology analysis: Host mass added to standardise SNIa

Betoule & al. 2014

Roman & al. 2017

The Nearby Supernova Factory

- UH88 + Supernova Integral Field Spectrograph (SNIFS)
- SNIFS Gives high quality spectrophotometry time series (Great example: SN2011fe, Pereira et al. (2013))
- ~300 supernovae at low redshift (z<0.1)</p>
- Best data that provide tools to standardize SNIa or build empirical SED model

The Nearby Supernova Factory

- UH88 + Supernova Integral Field Spectrograph (SNIFS)
- SNIFS Gives high quality spectrophotometry time series (Great example: SN2011fe, Pereira et al. (2013))
- ~300 supernovae at low redshift (z<0.1)</p>
- Best data that provide tools to standardize SNIa or build empirical SED model

Léget & al. in prep ; Léget Ph.D. 2016

Basic idea of SUGAR modeling —> Used spectral features measured at maximum light in B-band to describe intrinsic variability of SNe Ia:

- Spectral features are related only to the physics of the explosion
 - * Pseudo-equivalent width
 - * Minimum position of p-cygni profile
- Do not depend on host dust
- Do not depend on distance
- I3 computed at maximum light and used to train the SUGAR model

Léget & al. in prep ; Léget Ph.D. 2016

$$M(t;\lambda) = M_0(t;\lambda) - \sum_{i=1}^{1-3} \alpha(t;\lambda)q_i - A_V f(\lambda;R_V) + \Delta M_{grey}$$

3 components
instead of I for SALT2

- -

Léget & al. in prep ; Léget Ph.D. 2016

Léget & al. in prep ; Léget Ph.D. 2016

Léget & al. in prep ; Léget Ph.D. 2016

SUGAR improves SNIa spectral variability description in all spectral range!

SUGAR and cosmology:

- Dispersion of the model can be propagated to make simulations
- SALT2 and SUGAR simulation are done for a given cosmology
- SUGAR improves on simulation constraint on dark energy
- ~30% reduction of the error on w (SNIa alone)

Conclusions:

New SED model: SUGAR

3 intrinsic components instead of the classical stretch effect

Model performances:

- Better spectral description
- Residual spectral dispersion reduced by ~0.05 mag
- Could improve significatively the constraint on dark energy (with SNIa alone)

New tools for cosmology analysis

- Use SUGAR as a light-curve fitter (Done by Florian Mondon @ LPC-Clermont)
- Study correlation with host properties
- Extend the model in the UV