Clustering with quasar and galaxy surveys (e)BOSS - DESI

Ch. Yèche (CEA-Saclay Irfu)

Outline:

- > Concepts : BAO and RSD
- > SDSS-III: BOSS/eBOSS results
- > DESI: a future BAO and RSD survey

Colloque Dark Energy - Paris IAP - October 23, 2018

BAO and RSD

A probe for Dark Energy: Baryonic Acoustic Oscillations

A special distance:

> Galaxies form in the overdense shells about 150 Mpc in radius.

For all z, small excess of galaxies
 150 Mpc (in comobile coordinates) away
 from other galaxies.

 \Rightarrow Standard Ruler

Acoustic propagation of an overdensity:
Sound wave through relativistic plasma (baryons, electrons, photons).
Baryon and photon perturbations travel together till recombination (z~1100).
Then, the radius of the baryonic overdensity is frozen at 150 Mpc.

Observation of baryonic acoustic peak

 \succ Position of acoustic peak \Rightarrow Size of the sound horizon r_s

SDSS

> Transverse direction:

$$\Delta \theta = r_s/(1+z)/D_A(z)$$

 \Rightarrow Sensitive to angular distance $D_A(z)$

> Radial direction (along the line of sight): $\Delta z = r_s \cdot H(z)/c$

 \Rightarrow Sensitive to Hubble parameter H(z).

Large-scale Redshift Space Distortions

Acceleration toward overdense regions
 Flattening in radial direction from real space to redshift space (over tens Mpc)
 Allow us to measure action of gravity
 (5-40 Mpc) at cosmological distance (Gpc)

Distortion are quantitatively measured by multi-poles decomposition

$$\xi(r,\cos(\theta)) = \sum_{\ell=0,2,4\dots} b^2 C_{\ell} \xi(r) P_{\ell}(\cos(\theta))$$

- *P_l: Legendre polynomials*
- θ angle between pair vector and LoS
- b linear galaxy bias

N. Kaiser, MNRAS 227, 1 (1987)

SDSS - BOSS

Final Results

BOSS 2009-2014

SDSS Survey

2.5m Sloan telescope with a wide FoV ~ 7 deg²
 α,δ positions: 5 filter camera

- > z position: Spectrograph
- ~1000 simultaneous spectra

BOSS tracers

1.2 millions of Luminous Red
 Galaxies (light emitted 6 billions years
 ago, z~0.6)

170 000 quasars (light emitted 11 billions years ago, z~2.4)

BOSS completed in spring 2014

- Deeper and denser survey compare to SDSS-II
- Two tracers
 LOW-z: 0.15
 Z<0.43</p>
 CMASS: 0.43
 Z<0.7</p>
 Three overlapping redshift
 bins: 0.38, 0.51, 0.61

Final papers released in 2016
 Whole footprint with DR12
 ~10 000 deg²

BAO in Correlation Function

Use a fiducial model to compare against observed features in spherical average statistics.
 Departures quantified by dilatation scales α:

⇒Fit of ξ(αr)

BOSS-DR11. Anderson et al., 2014

 BOSS-only 8-σ observation
 One percent measurement of BAO scale for CMASS-only !!! Low-z: α=1.018 ± 0.021 CMASS: α=1.0144 ± 0.0098

Isotropic BAO results

> Combine transverse and longitudinal direction with $D_V = ((1+z)^2 D_A(z)^2 \cdot cz \cdot H(z)^{-1})^{1/3}$

- > New "Hubble" diagram with BAO like SNIa with D_V/r_s
- > BAO scales perfectly consistent with Planck 2018

BOSS-DR11. Anderson et al., 2014

Planck 2018. VI. cosmological parameters ¹⁰

Anisotropic BAO results

Redshift distortion clearly seen at <z>~0.6 in BOSS

BOSS-DR12 Alam et al. (2016)

Independent measurements of H(z) et D_A(z)
 No Alcock-Paczynski effect observed: α_⊥ and α_{||} are consistent
 FS= Full-shape fits with measurement of RSD (fσ₈)

Constraints on Friedman equation

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_{a}^{1} \frac{da'}{a'} \left[1 + w(a') \right] \right\} \right]$$

BOSS-DR11. Anderson et al., 2014

Dark Energy: Equation of state

≻ Eq. of state: w=P/p w(z)=w₀+z/(1+z).w₀

Planck+BAO: w₀ = -0.63±0.20 w_a = -1.16±0.55

Planck+BAO+FS+SN:
w₀ = -0.91±0.10
w_a = -0.39±0.34

Redshift Space Distortions

- > Amplitude of the flattening gives a dependence on $f(z)\sigma_8(z) \propto dG/dln(a)$, where G is linear growth rate
- > Test of GR with $f\sigma_8$ or γ where $f(z) \propto (\Omega_m(z))^{\gamma}$ in GR, γ =0.554
- > Deviation from GR: $f\sigma_8 \rightarrow f\sigma_8 [A_{f\sigma8}+B_{f\sigma8}.(z-z_p)]$ $A_{f\sigma8}=0.96\pm0.06$ and $B_{f\sigma8}=-0.62\pm0.40$

BAO with Ly- α forests

Detection of BAO

> 3D BAO: Correlation between the different lines of sight
> BAO measurement for z~2.3 (11 billions years ago).
> Better precision in radial direction (H(z) measurement)

Principles

Use Ly-α forests of quasars (2.2<z<4)
 HI absorption in IGM along the line of sight of QSOs

> We expect low density gas (IGM) to follow the dark matter density

BAO in Ly- α

Bautista, J et al., (2016) Du Mas des Bourboux et al. (2017)

- Consistent with QSO-Ly-α cross-correlation
- \geq ~2.5 σ tension with Planck 2015

Correlation Ly- α - Ly- α > 157 783 QSOs with 2.1<z<3.5 > Measurement of D_A(z) at 6% and H(z) at 3% at z~2.3

Measurement of expansion

First measurement of H(z) at z~2.3 (11 billions years from now)
Deceleration of the expansion for z>0.8, when matter dominated
Slight tension with Planck

17

1D power spectrum: Neutrino masses

Suppression of the small scales

N-body hydro simulations of IGM

Principle:

N. Palanque-Delabrouille et al. (2015)

Neutrino free-streaming: suppression of the structures at small scales (~1 Mpc) along the line of sight.

Limits:

- > With Ly- α alone:
 - $\Sigma m_v < 1.1 \text{ eV}$ @95%CL
- > With Planck 2015 alone:
 - $\Sigma m_v < 0.72 \text{ eV}$ @95%CL
- Combined with Planck 2015

 $\Sigma m_v < 0.12 \text{ eV}$ @95%CL

SDSS - eBOSS

First Results

SDSS eBOSS 2014-2018

0.6<z<1.2 > LRG at z~0.7 > ELG: Emission line galaxies (stars forming)

0.9<z<2.2 QSOs

Tracers of cosmic
structures
Unexplored Universe

Ly- α QSOs, 2.2<z<5 > Improvement of selection > ~17 deg⁻² \Rightarrow ~30 deg⁻²

First results with BAO

> Use DR14 data: ~1/3 of the final dataset > First observation with BAO with QSO tracers > Ω_{Λ} > 0 at 3.4 σ only with galaxy and QSO tracers

First results with RSD

> Use DR14 data: ~1/3
of the final dataset
> RSD clearly visible in
the quadrupole
> First measurement of
fo₈ at z~1.5

Planck 2018. VI. cosmological parameters

Zarrouk et al., (2018) 22

DESI tracers of the Matter

Five target classes spanning redshifts $z=0.05 \rightarrow 3.7$ for clustering DESI will explore a x30 larger volume than the SDSS map ~35 million redshifts over 14,000 sq. degrees in five years

Science with DESI

Improvements compared to SDSS

- > **BAO:** 1 order of magnitude better $\sigma(\alpha) \sim 0.1\%$
- > **RSD**: better than 1% over the full redshift range
- > Neutrino masses: precision ~20-25 meV on Σm_v
- > Non-gaussianity (inflation): $\sigma(f_{NL}) \sim 5$ (DESI-only)

Status of Imaging Surveys

 The Target Selection is based on optical imaging developed specially for DESI
 Three optical bands (grz) + two NIR bands (W1-W2)

Corrector and Focal plane

Assembled corrector at Kitt Peak

Commissioning instrument with cameras installed

- > Fall 2018: Installation of the corrector
- > Feb. 2019: Commissioning of the corrector
- > May 2019: Installation of focal plane with positioner

Spectrographs

First spectrograph delivered at Kitt Peak

Test spectrograph #3 at Windlight

- 10 Spectrographs built in France (CEA-IN2P3-INSU)
 July 2019: Commissioning of DESI with spectrographs
 Nov. 2019: Survey Validation
- Feb. 2020: Science Survey

BOSS →2014

- > BAO, a well established method with galaxies
- > Demonstration of BAO with Ly- α forests

eBOSS 2014-2019

- ➤ Exploring unknown Universe: Dark matter → Dark energy
- DESI precursor (target selection,...)
- > First results are very promising!

DESI 2020-2024

- > BAO: one order of magnitude better
- > First light next year
- Science survey will start

in early 2020

