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Detecting satellites using 
integrals of motion

Using integrals of motion we 
can detect satellites that are 
no longer visible in position-
velocity configuration space

Wilkinson,..., Helmi,..., et 
al. (2005)



Detection of substructure in 
Hipparcos data set

Helmi et al. (1999)



Dynamical friction
Dynamical process which removes angular momentum from 
orbit of a satellite system leading to orbiting decay and merging

A satellite of mass      moving through a background of smaller 
masses      (e.g. stars, dark matter) experiences a net 
deceleration parallel to its velocity    , due to wake of smaller
masses which forms behind it

If the DF of the background is Maxwellian, ie.

M
m

v

f(v) =
n0

(2πσ2)3/2
exp

(
− v2

2σ2

)

Λ ≡ bmaxv2
0

G(M + m)
X ≡ vM√

2σ

and we define two dimensionless quantities



• The drag acceleration                  drag force  

• Drag force

• Dynamical friction leads to observable decay of satellite 
galaxies (e.g. the Magellanic Clouds)

• This formulation (due to Schwarzschild) makes many 
simplifying assumptions, but nevertheless performs well 
for most applications

dvM

dt
= −4π lnΛG2ρM

v3
M

[
erf(X)− 2X√

π
e−X2

]
vM

then the deceleration is given by

Notes:

∝M =⇒ ∝M2

∝ 1/v2
M



Effects of dynamical friction
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• Dynamical friction drags satellites into higher density regions

• Can also lead to modification of parent halo profiles



Jeans Theorems
By definition,             is an integral if and only if

d
dt

I [x(t),v(t)] = 0 =⇒ ∇I.
dx
dt

+
∂I

∂v
.
dv
dt

= 0

=⇒ v.∇I −∇Φ.
∂I

∂v
= 0

=⇒ I

I(x,v)

is a solution of the CBE

Jeans Theorem: Any steady-state solution of the CBE depends 
on the phase space coordinates only through integrals of motion in 
the galactic potential, and any function of the integrals yields a 
steady-state solution of the CBE.

Leads to two theorems:



Proof: First part follows from the above. Now, if    is a function 
of the integrals                then

f
(I1 . . . In)

d
dt

f [I1(x,v), . . . , In(x,v)] =
n∑

m=1

∂f

∂Im

dIm

dt
= 0

as required.

A more useful theorem is:

Strong Jeans Theorem: The distribution function of a steady-
state galaxy in which almost all orbits are regular with 
incommensurable frequencies may be presumed to be a function only 
of three independent isolating integrals. 

For steady-state spherical systems, this implies that the DF is a 
function              and if the system is spherically symmetric in all 
properties, then 

f(E,L)
f = f(E,L)



Distribution functions of 
spherical systems

For a self-consistent system we have

Let relative potential     and relative energy    be given by

NB: In terms of     , Poisson’s equation is 

with boundary condition                 as 

∇2Φ = 4πG

∫
f(E,L)d3v

= 4πG

∫
f(

1
2
v2 + Φ, |r× v|)d3v

Ψ ε

Ψ ≡ −Φ + Φ0 ε ≡ −E + Φ0 = Ψ− 1
2
v2

∇2Ψ = −4πGρ

Ψ→ Φ0 |x|→∞

Ψ



If                 thenf ≡ f(ε)

v2
r =

1
ρ

∫
dvrdvθdvφ v2

rf [Ψ− 1
2
(v2

r + v2
θ + v2

φ)]

v2
θ =

1
ρ

∫
dvrdvθdvφ v2

θf [Ψ− 1
2
(v2

r + v2
θ + v2

φ)]

Hence                      , i.e. the velocity dispersion tensor is 
isotropic.    

v2
r = v2

θ = v2
φ

1
r2

d
dr

(
r2 dΨ

dr

)
= −16π2G

∫ √
2Ψ

0
f(Ψ− 1

2
v2)v2dv

= −16π2G

∫ Ψ

0
f(ε)

√
2(Ψ− ε)dε

Poisson equation becomes (choosing       such that                
for          )  

f(ε) = 0
ε < 0

Φ0



Constructing DFs
One approach is to assume a “reasonable” form for the DF in 
terms of integrals of motion.

For example, consider DF of form

fK(ε) =

{
ρ1(2πσ2)−3/2

(
eε/σ2 − 1

)
ε > 0

0 ε ≤ 0

Poisson equation becomes

d
dr

(
r2 dΨ

dr

)
= −4πGρ1r

2{eΨ/σ2
erf

(√
Ψ
σ

)

−
√

4Ψ
πσ2

(
1 +

2Ψ
3σ2

)
}



This DF leads to the King models which are characterised either 
by their concentration

c ≡ log10(rt/r0)

or by the ratio               . Ψ(0)/σ2

• King models are good representations of globular clusters 
where interactions lead to Maxwellian energy distribution

• Surface brightness profile has a core+halo structure which falls 
to zero at a finite radius      - the “King tidal radius”. 

• When applied to collisionless systems, they are just fitting 
formulae - “tidal radius” is just a parameter

rt
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Building isotropic DF from ρ(r)
Density is related to DF by

Differentiating with respect to     we obtain

which is an Abel equation for         with solution (Eddington’s 
Formula)

ρ(r) = 4π

∫ Ψ

0
f(ε)

√
2(Ψ− ε)dε

=⇒ 1√
8π

ρ(Ψ) = 2
∫ Ψ

0
f(ε)

√
Ψ− εdε

Ψ
1√
8π

dρ(Ψ)
dΨ

=
∫ Ψ

0

f(ε)√
Ψ− ε

dε

f(ε)

f(ε) =
1√
8π2

d
dε

∫ ε

0

dρ

dΨ
dΨ√
ε−Ψ



or, alternatively

f(ε) =
1√
8π2

[∫ ε

0

d2ρ

dΨ2

dΨ√
ε−Ψ

+
1√
ε

(
dρ

dΨ

)

Ψ=0

]

NB: Since we assumed that DF depends only on energy, this 
distribution function has an isotropic velocity distribution

If         is non-negative everywhere, then this is the unique
isotropic DF corresponding to the density profile     

f(ε)
ρ(r)



Models with anisotropic velocity 
dispersion tensors

DFs of the form              have anisotropic velocity dispersion 
tensors.
Let              be coordinates in velocity space oriented such that

 

f(E,L)

(v, η, ψ)

vr = v cos η, vθ = v sin η cos ψ, vφ = v sin η sinψ

We then have

To proceed we must choose the form of the    -dependence

ρ(r) =
∫

f(ε, L)d3v

= 2π

∫ π

0
sin ηdη

∫ ∞

0
f(Ψ− 1

2
v2, |rv sin η|)v2dv

L



where     is the anisotropy radius. If we assume that                for 
          then

One common choice is                                   which leads to 
models with                      (i.e. constant anisotropy) 

F (ε, L) = L−2βf(ε)
β(r) ≡ const

Another family of models are known as Osipkov-Merritt models:

f(ε, L) ≡ f(Q)

Q ≡ ε− L2

2r2
a

= Ψ− 1
2
v2

(
1 +

r2

r2
a

sin2 η

)

ra f(Q) = 0
Q ≤ 0

ρ(r) = 2π

∫ π

0
sin ηdη

∫ Ψ

0
f(Q)

√
2 (Ψ−Q)dQ

[
1 +

(
r
ra

)2
sin2 η

]3/2

=⇒
(

1 +
r2

r2
a

)
ρ(r) = 4π

∫ Ψ

0
f(Q)

√
2 (Ψ−Q)dQ



The models are useful because they are isotropic at small radii
               but become radially anisotropic at large radii

They are widely used because they are one of the simplest 
anisotropic models to construct.

Comparing this with the derivation of the Eddington formula, we 
conclude that 

f(Q) =
1√
8π2

[∫ Q

0

d2ρQ

dΨ2

dΨ√
Q−Ψ

+
1√
Q

(
dρQ

dΨ

)

Q=0

]

ρQ(r) ≡
(

1 +
r2

r2
a

)
ρ(r)

where

r ! ra r ! ra



Impact of Milky Way models on 
DM direct detection rates

Changing from isotropy to
Osipkov-Merritt anistropy

Including halo substructure

Green (2002)



The Tensor Virial Theorem

∫
xk

∂(ρvj)
∂t

d3x = −
∫

xk
∂(ρvivj)

∂xi
d3x−

∫
ρxk

∂Φ
∂xj

d3x

Multiply the CBE by     and integrate over spatial variablesxk

Define potential energy tensor      and kinetic energy tensor W

Wjk ≡ −
∫

ρ(x)xj
∂Φ
∂xk

d3x

Kjk ≡ 1
2

∫
ρvjvkd3x

Kjk = Tjk +
1
2
Πjk

K

where
Tjk ≡

1
2

∫
ρvj vkd3x Πjk ≡

∫
ρσ2

jkd3x



1
2

d
dt

∫
ρ(xkvj + xjvk)d3x = 2Tjk + Πjk + Wjk

Ijk ≡
∫

ρxjxkd3x

1
2

d2Ijk

dt2
= 2Tjk + Πjk + Wjk

2K + W = 0

Hence we obtain

Define the moment of inertia tensor I

Hence, obtain the tensor virial theorem

Taking the trace, in steady state, yields the scalar virial theorem



2Tjk + Πjk + Wjk = 0

Tensor virial theorem for steady-state system:

Define the “gravitational radius” via rg ≡
GM2

|W |

〈v2〉 =
|W |
M

=
GM

rg
# 0.4

GM

rh
Scalar virial theorem implies

       velocities of stars are related directly to shape of 
gravitational potential well
=⇒



2Tjk + Πjk + Wjk = 0

Tensor virial theorem for steady-state system:

Define the “gravitational radius” via rg ≡
GM2

|W |

〈v2〉 =
|W |
M

=
GM

rg
# 0.4

GM

rh
Scalar virial theorem implies

       velocities of stars are related directly to shape of 
gravitational potential well
=⇒

Streaming
motion



2Tjk + Πjk + Wjk = 0

Tensor virial theorem for steady-state system:
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2Tjk + Πjk + Wjk = 0

Tensor virial theorem for steady-state system:

Define the “gravitational radius” via rg ≡
GM2

|W |

〈v2〉 =
|W |
M

=
GM

rg
# 0.4

GM

rh
Scalar virial theorem implies

       velocities of stars are related directly to shape of 
gravitational potential well
=⇒

Streaming
motion

Random
motion

Potential
energy



Mass Estimation

• Mass estimates for point masses using Keplerian 
tracers are relatively straightforward

• Estimating the mass of an extended system, is 
more difficult

• Simplifying assumptions often required

• If tracers are pressure-supported (ie kinematically 
“hot”) then significantly more complicated

• Robust mass estimation is crucial for dark matter 
studies as it provides density distributions



Simple Mass Estimators I - Virial estimator

I =
1
2
m

∑

i

R2
i

Ï = m
∑

i

R̈i.Ri + m
∑

i

Ṙ2
i

The moment of inertia    of the system is given byI

m
∑

i

R̈i.Ri = −Gm2
∑

i

∑

i !=j

Rij .Ri

R3
ij

= −Gm2
∑

i

∑

j<i

1
Rij

= W

Consider a self-gravitating system of     galaxies, each of mass     .N m

Differentiate:

Now



−Gm2
∑

i<j

〈 1
Rij

〉t + m
∑

i

〈V 2
i 〉t = 0

〈R−1
ij 〉 =

2
π
〈R−1
⊥,ij〉

Hence we obtain

Now, assuming an isotropic velocity distribution and spherical 
symmetry, we have 

From this we obtain the Virial Mass Estimator

〈V 2
i 〉 = 3〈V 2

z,i〉

M =
3πN

2G

∑

i

〈〈V 2
z,i〉t〉

∑

i<j

〈〈R−1
⊥,ij〉t〉



q ≡ v2
zR

G

Assume a velocity distribution                which depends on two 
integrals of motion, and integrate over all         . 

F (E,L2)
(r,v)

〈q〉 =
πM

32
(3 − 2〈e2〉)

Simple Mass Estimators II - Projected Mass 
Estimator (Bahcall & Tremaine, 1981)

Consider the quantity 

Mass estimator for system with tracer particles moving 
around a point mass M

Find that 



M =
f

πGN

N∑

i=1

v2
z,iRi

Hence, the projected mass estimator is

For isotropic orbits: 〈e2〉 = 1/2 =⇒ f = 16

For radial orbits: 〈e2〉 = 1 =⇒ f = 32
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Comparison of estimators

•  All simple estimators have systematic uncertainties
•  Very sensitive to assumptions about (an)isotropy of 
velocity distribution



Jeans equations give simple relation between kinematics, the light 
distribution and the underlying mass distribution

We can either:

1. Assume a parameterised mass model           and velocity 
anisotropy          and fit kinematic data (e.g. dispersion profile)

or

2. Use Jeans equations to determine mass profile from projected 
kinematics and a fit to the light distribution

Mass estimation with Jeans equations

M(r) = −r2

G

(
1
ν

d νσ2
r

d r
+ 2

βσ2
r

r

)

β(r)
M(r)

β(r) = 1 − 〈v2
t 〉

2〈v2
r 〉



Degeneracies in mass models -
why dispersion profiles aren’t enough

!!" !#" !$" !%" " %" $" #"
"

&"

%""

%&"

$""

$&"

#""

'
()*

+

!!" !#" !$" " $" #" !"
"

%"

$""

$%"

#""

&
'()

*

Tangential anisotropy (circular motions) can lead to inflation of 
observed line of sight velocity dispersion 



Mass estimates with limited data
• We need surface brightness profile          of tracer 

population and information about tracer velocity distribution

• Problems with          :

• For faint systems profile may be very noisy

• Tracer profile may not match that of main galaxy 
population (e.g. if observing metal-rich stars in a dSph)

• In absence of a velocity dispersion profile         , need to 
make strong assumptions about the shape of the profile 

• e.g. for faint dSphs might assume isotropy and a flat 
dispersion profile since this is seen in brighter dSphs

• mass-follows-light is often assumed although not justified 
in brighter dSphs

Σ(R)

Σ(R)

σ(R)



Segue I - the least-luminous dSph?

Geha et al., (2008)



The halo around Segue I

Belokurov et al. (2006)



The halo around Segue I

Belokurov et al. (2006)



Velocity of Sagittarius tails

Fellhauer et al. (2006)



Velocity of Sagittarius tails

Fellhauer et al. (2006)
Is Segue sample contaminated by Sgr tails? 
Could this inflate dispersion from expected value (                    )?
See paper by Niederte-Ostholt (2009, subm.)

∼ 0.4km s−1



SegI - a constant halo mass scale? 

Geha et al. (2008)

NB: Segue1 mass in this plot is extrapolated from                
within 50pc

Density within 50pc still high enough to produce interesting 
gamma ray flux if central mass estimate is correct

5× 105M!



 Hercules - another case for caution

Aden et al. (2009)

Galactic foreground 
interlopers removed 
using Stromgren 
photometry

Velocity dispersion 
reduced to 

        factor 2 reduction 
in estimated mass

3.7± 0.9km s−1

=⇒



The Canis Major controversy
On-going debate about whether 
this is a distrupted dSph or 
merely the flared and warped 
outer disk of the Milky Way

Outer disk is very complicated, 
therefore it’s hard to determine 
which fields are “symmetric” 
and hence whether the over-
density is real

Recent work by Mateu et al. 
(2009) found no excess of RR 
Lyrae stars in the over-density                       
       unlike any known dSph=⇒Mateu et al, (2009)
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Conclusions
Questions to ask before believing a mass model

• Was equillibrium assumed? Is this reasonable?

• What size of kinematic sample was used? Sufficient?

• What magnitude are the individual velocity errors - 
would any claimed kinematic features be resolvable?

• What foreground/background interlopers are in the 
field? (Remember that halo is a mess)

• Were Jeans equations used? Does the resulting model 
have a DF that is non-negative everywhere?

• What has been assumed about velocity anisotropy?


