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Dynamical timescales
(when is a sytem “collisionless”?)

Newton’s Laws imply

Consider a star moving through a galaxy of     stars each of 
mass    . The deflection force due to a star at perpendicular 
distance     is given by

N
m

b



Mean surface density of galaxy is             so number of 
perturbations with impact parameter                   per crossing 
is given by               
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Total velocity change per crossing is 

Mean square velocity change per crossing:



         is the crossing time and          is the relaxation 
time
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For self-gravitating system, typical velocity is given by (see later)
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A system is called collisionless if            is large (e.g. larger 
than a Hubble time.

Some systems may be approximated as collisionless if we are 
only studying them for a time that is much less then their 
relaxation time.

The evolution of collisional systems (e.g. star clusters) is 
dominated by encounters between the stars

In these two talks, I will be focussing on systems which can be 
well-approximated as collisionless

trelax



The Collisionless Boltzmann equation
Consider a large number of stars moving in a smooth potential
           . The distribution function (DF) or phase-space 
density gives a complete description of the system at time   . 

The number of stars in the volume              is                       
If the phase-space coordinates are                   then we have

If we assume a collisionless flow in phase space, this implies a 
continuity equation

We also have
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∂ẇα

∂wα
=

3∑

i=1

(
∂vi

∂xi
+

∂v̇i

∂vi

)
= −

3∑

i=1

∂

∂vi

(
∂Φ
∂xi

)
= 0

t



This leads directly to the Collisionless Boltzmann 
Equation (CBE; a.k.a. Liouville’s Theorem, Vlasov equation)

i.e.
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Interpretation of the distribution function:

• Think of DF as a probability density, rather than a phase 
space density.

• To get an observable we integrate over a volume of phase 
space. 

• For example, the z-velocity dispersion of M dwarf stars 
within 1pc of the sun is
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and               within 1pc of the Sun, and zero outside. 
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Jeans equations
Take the zeroth moment of the CBE by integrating over all d3v

Defining

we find

Now take first moment of CBE

from which we obtain



where the last term was obtained using 

Combining the first and second equations, we obtain the 
Jeans equations
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(c.f. Euler equation of fluid flow)

Note:        is symmetric - the principle axes are axes of the 
velocity ellipsoid
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Jeans equations for spherical systems
In spherical polar coordinates, and assuming a steady-state 
system with                    , Jeans equations become

Hence, Jeans equations become

If the density and velocity structures are both invariant under 
rotation about the centre, we must have

Define the Binney anisotropy parameter:

vr = vθ = 0

1
ν(r)

d(ν(r)v2
r(r))

dr
+ 2

β(r)v2
r(r)

r
= −dΦ(r)

dr



Velocity ellipsoid in the Galactic disk
Need to know the orientation of the velocity ellipsoid as a 
function of position in the disk of the Milky Way in order to 
measure the mass of the disk, and amount of dark matter in 
Solar neighbourhood.

Depending on shape of gravitational potential, the velocity
ellipsoid can be aligned either in spherical coordinates or 
cylindrical coordinates.



Assuming that we know the gravitational force      , we can obtain 
the mass density     from Poisson’s equation

Assuming an axisymmetric system this becomes

To proceed we need to know vertical force       (a.k.a.       ).

Jeans equations in cylindrical coordinates tell us that
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Assuming that we know the gravitational force      , we can obtain 
the mass density     from Poisson’s equation

Assuming an axisymmetric system this becomes

To proceed we need to know vertical force       (a.k.a.       ).

Jeans equations in cylindrical coordinates tell us that

i.e.      depends on the “tilt” of the velocity ellipsoid 
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Integrals of motion
• An integral of motion is a function            which is constant 

along any orbit, i.e.

• Examples:

• Energy is an integral in a static potential

•      is an integral in an axisymmetric potential with 
symmetry axis   .

•  Three components of angular momentum are integrals in 
a spherical potential.

• Integrals can be isolating or non-isolating. Only 
isolating integrals are useful - they allow orbits to be 
classified according to the values of their integrals.        
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Last closed surface around the satellite is called the tidal 
radius,     .

Tidal Radii

At low      , zero velocity surfaces                   are closed around 
one or other body. Larger      surfaces surround both bodies.

For two point masses a distance      apart,     is given by

To first order, stars outside this radius will eventually be stripped.

Consider a satellite of mass     moving on a circular orbit about 
a galaxy of mass      with constant angular speed      . In this 
steadily rotating potential, the Jacobi integral       is an integral of 
the motion
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Stellar streams

Johnston



Tidal tails of Pal 5

SDSS, 2002



Fellhauer et al. (2006)

The tails of Sagittarius


