Constraints on Dark Matter WIMPs models with H.E.S.S. observations of the Canis Major overdensity Emmanuel Moulin for Matthieu Vivier, on behalf the H.E.S.S. collaboration Paper reference: « A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S. », to be published in ApJ (2009), arXiv:0809.3894. **■**DM: 25% of the Universe energy content - **■**DM: 25% of the Universe energy content - •Well-described by *Weakly Interactive Massive Particles* (WIMPs): SUSY, Kaluza-Klein... - **■**DM: 25% of the Universe energy content - •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein... - •WIMPs generally annihiliate into very high energy γ -rays - $\rightarrow \gamma$ -ray lines - $\rightarrow \gamma$ -ray continuum with a cut-off at the DM particle mass - **■**DM: 25% of the Universe energy content - •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein... - •WIMPs generally annihiliate into very high energy γ -rays - Potential targets are region of high concentration of DM: - -Clusters of galaxies Dark 2009, 18-24 January 2009, Christchurch New - **■**DM: 25% of the Universe energy content - •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein... - •WIMPs generally annihiliate into very high energy γ -rays - Potential targets are region of high concentration of DM: - -The Galactic Center (Aharonian et al., 2006) - **■**DM: 25% of the Universe energy content - •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein... - •WIMPs generally annihiliate into very high energy γ -rays - Potential targets are region of high concentration of DM: -Dwarf spheroidal galaxies (dSph): Sagittarius(Aharonian et al., 2006), Draco, Canis Major (Aharonian et al., 2009) Dark 2009, 18-24 January 2009, Christchurch New - **■**DM: 25% of the Universe energy content - •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein... - •WIMPs generally annihiliate into very high energy γ -rays - Potential targets are region of high concentration of DM: - -Dark Matter substructures: clumps, Intermediate Mass Black Holes (see Emmanuel Moulin's talk)... Dark 2009, 18-24 January 2009, Christchurch New ## The dwarf spheroidal galaxies - •Small galaxies that orbits around the Milky Way. - •Predicted by simulations of structure formation. - Very faint objetcs, difficult to detect. - •Highly dominated by DM, very good candidate for the detection of DM. - •Observed by H.E.S.S. in the southern hemisphere: Sagittarius, Canis Major, Carina, Sculptor. # The Canis Major overdensity •An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane. ## The Canis Major overdensity - •An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane. - Two scenarios: - →A part of the warped Galactic disk (Momany et al, 2006) - →The remnant of a dSph that would have been absorbed by the Milky Way (Martinez-Delgado et al, 2004) ## The Canis Major overdensity - •An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane. - Two scenarios: - →A part of the warped Galactic disk (Momany et al, 2006) - →The remnant of a dSph that would have been absorbed by the Milky Way (Martinez-Delgado et al, 2004) - ■Distance: 7± 1 kpc (three times closer than Sagittarius) - •Very extended: $\Delta l=12^{\circ}$, $\Delta b=10^{\circ}$ - ■Mass $\approx 10^8 \, \text{M}_{\text{sdar}}$ (Evans et al., 2004), similar to Sagittarius - ■9.6 hours of good quality data taken with H.E.S.S. Surface density of M-giant stars (Bellazinni et al, 2005) #### H.E.S.S. A square array of four *Imaging Atmospheric Cherenkov Telescopes*, dedicated for the detection of very high energy γ - →13m diameter telescope: mirror area of ≈ 100 m² + a camera covering a 5° total field of view →Stereoscopic reconstruction →Angular resolution < $0.1^{\circ}/\gamma$ →Energy threshold ≈ 100 GeV at zenith \rightarrow Sensitivity: 1% of the Crab flux in 25 hours (5 σ) ### Data analysis - Combines a semi-analytical model of air showers (which predicts the expected intensity of Cherenkov light in each pixels of the camera) & the Hillas moments method. - $\neg \gamma$ selection cuts computed with simulations. - •Energy and direction of the γ -ray are fitted to match the camera images. ### Canis Major data analysis results - •No significant excess at the target position (black triangle) - Distribution of significance: gaussian of mean 0 and variance 1 - Constraints on WIMP models given the absence of signal in the entire field of view # Expected γ-ray flux from DM annihilation $$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$ #### Particle Physics model $$\frac{d\Phi^{PP}}{dE} = \frac{\langle \sigma v \rangle}{4\pi m_{DM}^2} \int_0^{m_{DM}} \overline{A_{eff}}(E_\gamma) \left(\frac{dN}{dE}\right)_{DM} dE_\gamma$$ - ■<σv>: velocity-weighted annihilation cross-section of WIMPs - ■m_m: WIMP mass - $\mathsf{E}_{\scriptscriptstyle\gamma}$ - •(dN/dE)_m: γ -ray annihilation spectrum (particle physics model) - 1) SUSY - 2) Kaluza-Klein Matthieu Vivier ## Expected γ-ray flux from DM # annihilation $$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$ #### **Particle Physics model** 1) Neutralino annihilation (phenomenological Minimal SUSY extension of the Standard Model of particle physics) \rightarrow Parametrization of the γ -ray spectrum taken from *Bergström et al, 1998*. $$\frac{dN}{dE} = \frac{p_1}{m_c} \, \Box \, \frac{e^{-p_2 E/m_c}}{(E/m_c)^{p_3} + p_4}$$ # Expected γ-ray flux from DM ### annihilation $$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$ #### **Particle Physics model** - 2) Kaluza-Klein particle annihilation (Universal Extra Dimensions models) - →Spectrum simulated with the PYTHIA package taking the branching ratio Dark 2009, 18-24 January 2009, Christchurch New # Expected γ-ray flux from DM annihilation $$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$ #### **DM mass distribution modelling** - •Usually constrained with observational data (velocity dispersion of stars and luminosity profiles of the galaxies). - ■Two main parametrizations of the DM profile are used in the literature: - →cusped NFW model (predicted by N-body simulations) - →core halo model (flat profile in the inner pc of the galaxy) #### Halo independent constraints: limits on <σv>×f^{AP} #### Method: 1) Given the absence of signal in the entire field of view: computation of the uppers limit on the number of γ s in each direction of the field of view →Upper limit γ map 1) Upper limit map on the value of $f^{\mathbb{A}} \times < \sigma v >$, given a specific WIMP mass + the corresponding 1D-distribution (well-fitted by a gaussian) f^{AP}*<σv> upper limit map + the corresponding 1D-distribution for a 1TeV neutralino Dark 2009, 18-24 January 2009, Christchurch New #### Halo independent constraints: limits on <σv>×f^{AP} - Method: - 3) Repeat the procedure with varying the neutralino mass - Grey shaded area = 1σ variation of gaussian fits - Limits on f^{AP} x $<\sigma v> \rightarrow$ limits on CMa mass and $<\sigma v>$ with respectively assumptions on $<\sigma v>$ and the total CMa mass. # Canis Major DM halo modelling - No observationnal data to constrain the DM halo profile of Canis Major - •Hypothesis of a standard cusped NFW profile - •Computation of the parameters with the help of the lastest results from the simulations of structure formation. $$\rho_{cusped}(r) = \frac{\rho_0}{\frac{r}{r_s}(1 + \frac{r}{r_s})^2}$$ #### **Halo parameters** - $\bullet \rho_0$: mass density normalisation - r_s: scale radius - •r_t: tidal radius - • M_{tx} : mass of Canis Major (volume integral of the DM mass distribution between 0 and r_{t}). # Canis Major DM halo modelling - •Computation of the halo parameters ρ_0 & r_s by solving a system of three equations: - \rightarrow uses the definition of the virial mass M_{vir} of the CMa halo (eq. 2) - \rightarrow uses the relation between the concentration parameter C_{vir} and M_{vir} (eq. 3). Taken from Dolag et al., 2004. (1 $$\overbrace{M_{vir}}) = \int_{0}^{R_{vir}} \rho_{cusped}(r) \times d^{3}\vec{r}$$) $\bullet \rho_{200} = 200 \times (\rho_{\rm u} = 83)$ (2 $M_{vir} = \frac{4\pi}{3}\rho_{200} \times R_{vir}^{3}$ $M_{\rm sdar} / (kpc^{3})$) (3 $C_{vir}(M_{vir}, z) = \frac{c_{0}}{1+z} \times \left(\frac{M_{vir}}{10^{14}h^{-1}M_{sun}}\right)^{\alpha}$ $\bullet C_{\rm vir} = R_{\rm vir}/r_{\rm s.}$ • $\bullet \alpha = -0.1$; $c_{0} = 9.6$ in a \land CDM cosmology (Dolag et al., 2004) ■But... $M_{vir} \neq M_{tot}$ → Iterative tidal stripping procedure to relate M_{vir} & M_{tot} . ## Canis Major DM halo modelling - ■Assumes that: $M_{txt} = M(r \le r_t)$, r_t tidal radius - •r_t computed with an iterative tidal stripping procedure - ${}^{\bullet}M_{tt} \approx 0.1 M_{vir}$ at the end of the procedure \rightarrow then we have $M_{tot} = f(\rho_0, r_s)$ and computation of the astrophysical factor $f^{AP} = f(M_s)$ | M_{vir} | $ ho_0$ | r_s | r_t | $M(r \le r_t)$ | f^{AP} | |--------------------|-------------------------------|-------|-------|--------------------|--| | $({ m M}_{\odot})$ | $(10^8 \rm M_\odot~kpc^{-3})$ | (kpc) | (kpc) | $({ m M}_{\odot})$ | $(10^{24} \text{GeV}^2 \text{ cm}^{-5})$ | | 10^{6} | 4.7 | 0.04 | 0.28 | $3.9 \ 10^5$ | 0.24 | | 10^{8} | 1.3 | 0.28 | 1.17 | $3.1 10^7$ | 2.2 | | 10^{10} | 0.39 | 2.08 | 4.15 | $1.9 10^9$ | 12 | ## Limits on the Canis Major halo mass •Assumes a fixed value for $\langle \sigma v \rangle$ •Relatively high value for $<\sigma v>$ (> 3×10^{-26} cm³ s⁻¹) to constrain the mass #### Limits on $\langle \sigma v \rangle$ •Assumes $M_{tot} = 3 \times 10^8 M_{star}$ (Evans et al., 2004) #### 1) SUSY models: pMSSM Red = pMSSM predictions compatible with the value of Ω_{CDM} as measured by WMAP. $$<\sigma v>$$ ^{95/CL} $\approx 5.10^{-24}$ cm³ s⁻¹ #### Limits on $\langle \sigma v \rangle$ •Assumes $M_{tot} = 3 \times 10^8 M_{sdar}$ (Evans et al., 2004) #### 2) Kaluza-klein models Red = KK models compatible with the value of $\Omega_{\rm CDM}$ as measured by WMAP. $$<\sigma v>^{95\%CL} \approx 5.10^{-25}$$ cm³ s⁻¹ ## H.E.S.S. limits comparison Competitive limits for Canis Major | Targets WIMPs model | pMSSM | <u>Kaluza-Klein</u> | |--------------------------|--|--| | Galactic Center
(NFW) | <σν> ^{95/Δ} ~ 10 ⁻²³ cm ³ s ⁻¹ | «σν» ^{99%,Ω} ~ 10 ⁻²⁴ cm ³ s ⁻¹ | | Sgr Dwarf
(NFW) | <σν> ^{95/Δ} ~ 10 ⁻²³ cm ³ s ⁻¹ | «σν» ^{95%,Ω} ~ 10 ⁻²⁴ cm ³ s ⁻¹ | | (Core) | <σν> ^{95%2} ~ 2.10 ⁻²⁵ cm ³ s ⁻¹ | «σν» ^{95/4} ~ 5.10 ⁻²⁶ cm ³ s ⁻¹ | | CMa Dwarf
(NFW) | «σv≠ ^{son} ~5.10 ^{se} cm³ s¹ | к ом^ж4 ~510° ст³ s¹ | #### Conclusions - •No signal detected. - •Halo modelling: no observational data. Assumed NFW + tidal stripping. - •Close to exclude pMSSM predictions with higgsino-like neutralinos. - No KK scenarios excluded. - •Good limits in comparison with the other targets observed by H.E.S.S.