Constraints on Dark Matter WIMPs models with H.E.S.S. observations of the Canis Major overdensity

Emmanuel Moulin for Matthieu Vivier, on behalf the H.E.S.S. collaboration

Paper reference: « A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S. », to be published in ApJ (2009), arXiv:0809.3894.

■DM: 25% of the Universe energy content

- **■**DM: 25% of the Universe energy content
- •Well-described by *Weakly Interactive Massive Particles* (WIMPs): SUSY, Kaluza-Klein...

- **■**DM: 25% of the Universe energy content
- •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein...
- •WIMPs generally annihiliate into very high energy γ -rays
 - $\rightarrow \gamma$ -ray lines
 - $\rightarrow \gamma$ -ray continuum with a cut-off at the DM particle mass

- **■**DM: 25% of the Universe energy content
- •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein...
- •WIMPs generally annihiliate into very high energy γ -rays
- Potential targets are region of high concentration of DM:
 - -Clusters of galaxies

Dark 2009, 18-24 January 2009, Christchurch New

- **■**DM: 25% of the Universe energy content
- •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein...
- •WIMPs generally annihiliate into very high energy γ -rays
- Potential targets are region of high concentration of DM:
 - -The Galactic Center (Aharonian et al., 2006)

- **■**DM: 25% of the Universe energy content
- •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein...
- •WIMPs generally annihiliate into very high energy γ -rays
- Potential targets are region of high concentration of DM:

-Dwarf spheroidal galaxies (dSph): Sagittarius(Aharonian et al., 2006), Draco, Canis Major (Aharonian et al., 2009)

Dark 2009, 18-24 January 2009, Christchurch New

- **■**DM: 25% of the Universe energy content
- •Well-described by Weakly Interactive Massive Particles (WIMPs): SUSY, Kaluza-Klein...
- •WIMPs generally annihiliate into very high energy γ -rays
- Potential targets are region of high concentration of DM:
 - -Dark Matter substructures: clumps, Intermediate Mass Black Holes (see Emmanuel Moulin's talk)...

Dark 2009, 18-24 January 2009, Christchurch New

The dwarf spheroidal galaxies

- •Small galaxies that orbits around the Milky Way.
- •Predicted by simulations of structure formation.
- Very faint objetcs, difficult to detect.
- •Highly dominated by DM, very good candidate for the detection of DM.
- •Observed by H.E.S.S. in the southern hemisphere: Sagittarius, Canis Major, Carina, Sculptor.

The Canis Major overdensity

•An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane.

The Canis Major overdensity

- •An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane.
- Two scenarios:
 - →A part of the warped Galactic disk (Momany et al, 2006)
 - →The remnant of a dSph that would have been absorbed by the Milky Way (Martinez-Delgado et al, 2004)

The Canis Major overdensity

- •An overdensity of stars located towards the Galactic anti-center direction, under the Galactic plane.
- Two scenarios:
 - →A part of the warped Galactic disk (Momany et al, 2006)
 - →The remnant of a dSph that would have been absorbed by the Milky Way (Martinez-Delgado et al, 2004)

- ■Distance: 7± 1 kpc (three times closer than Sagittarius)
- •Very extended: $\Delta l=12^{\circ}$, $\Delta b=10^{\circ}$
- ■Mass $\approx 10^8 \, \text{M}_{\text{sdar}}$ (Evans et al., 2004), similar to Sagittarius
- ■9.6 hours of good quality data taken with H.E.S.S.

Surface density of M-giant stars (Bellazinni et al, 2005)

H.E.S.S.

A square array of four *Imaging Atmospheric Cherenkov Telescopes*, dedicated for the detection of very high energy γ -

→13m diameter telescope: mirror area of ≈ 100 m² + a camera covering a 5° total field of view

→Stereoscopic reconstruction

→Angular resolution < $0.1^{\circ}/\gamma$

→Energy threshold ≈ 100 GeV at zenith

 \rightarrow Sensitivity: 1% of the Crab flux in 25 hours (5 σ)

Data analysis

- Combines a semi-analytical model of air showers (which predicts the expected intensity of Cherenkov light in each pixels of the camera) & the Hillas moments method.
- $\neg \gamma$ selection cuts computed with simulations.
- •Energy and direction of the γ -ray are fitted to match the camera images.

Canis Major data analysis results

- •No significant excess at the target position (black triangle)
- Distribution of significance: gaussian of mean 0 and variance 1
- Constraints on WIMP models given the absence of signal in the entire field of view

Expected γ-ray flux from DM

annihilation
$$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$

Particle Physics model

$$\frac{d\Phi^{PP}}{dE} = \frac{\langle \sigma v \rangle}{4\pi m_{DM}^2} \int_0^{m_{DM}} \overline{A_{eff}}(E_\gamma) \left(\frac{dN}{dE}\right)_{DM} dE_\gamma$$

- ■<σv>: velocity-weighted annihilation cross-section of WIMPs
- ■m_m: WIMP mass
- $\mathsf{E}_{\scriptscriptstyle\gamma}$
- •(dN/dE)_m: γ -ray annihilation spectrum (particle physics model)
 - 1) SUSY
- 2) Kaluza-Klein Matthieu Vivier

Expected γ-ray flux from DM

annihilation

$$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$

Particle Physics model

1) Neutralino annihilation (phenomenological Minimal SUSY extension of the Standard Model of particle physics)

 \rightarrow Parametrization of the γ -ray spectrum taken from *Bergström et al, 1998*.

$$\frac{dN}{dE} = \frac{p_1}{m_c} \, \Box \, \frac{e^{-p_2 E/m_c}}{(E/m_c)^{p_3} + p_4}$$

Expected γ-ray flux from DM

annihilation

$$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$

Particle Physics model

- 2) Kaluza-Klein particle annihilation (Universal Extra Dimensions models)
 - →Spectrum simulated with the PYTHIA package taking the branching ratio

Dark 2009, 18-24 January 2009, Christchurch New

Expected γ-ray flux from DM annihilation

$$\phi_{\gamma} = \frac{d\Phi^{PP}}{dE_{\gamma}} \times f^{AP}$$

DM mass distribution modelling

- •Usually constrained with observational data (velocity dispersion of stars and luminosity profiles of the galaxies).
- ■Two main parametrizations of the DM profile are used in the literature:
 - →cusped NFW model (predicted by N-body simulations)
 - →core halo model (flat profile in the inner pc of the galaxy)

Halo independent constraints: limits on <σv>×f^{AP}

Method:

1) Given the absence of signal in the entire field of view: computation of the uppers limit on the number of γ s in each direction of the field of view

→Upper limit γ map

1) Upper limit map on the value of $f^{\mathbb{A}} \times < \sigma v >$, given a specific WIMP mass + the corresponding 1D-distribution (well-fitted by a gaussian)

f^{AP}*<σv> upper limit map + the corresponding 1D-distribution for a 1TeV neutralino Dark 2009, 18-24 January 2009, Christchurch New

Halo independent constraints: limits on <σv>×f^{AP}

- Method:
 - 3) Repeat the procedure with varying the neutralino mass

- Grey shaded area = 1σ variation of gaussian fits
- Limits on f^{AP} x $<\sigma v> \rightarrow$ limits on CMa mass and $<\sigma v>$ with respectively assumptions on $<\sigma v>$ and the total CMa mass.

Canis Major DM halo modelling

- No observationnal data to constrain the DM halo profile of Canis Major
- •Hypothesis of a standard cusped NFW profile
- •Computation of the parameters with the help of the lastest results from the simulations of structure formation.

$$\rho_{cusped}(r) = \frac{\rho_0}{\frac{r}{r_s}(1 + \frac{r}{r_s})^2}$$

Halo parameters

- $\bullet \rho_0$: mass density normalisation
- r_s: scale radius
- •r_t: tidal radius
- • M_{tx} : mass of Canis Major (volume integral of the DM mass distribution between 0 and r_{t}).

Canis Major DM halo modelling

- •Computation of the halo parameters ρ_0 & r_s by solving a system of three equations:
 - \rightarrow uses the definition of the virial mass M_{vir} of the CMa halo (eq. 2)
 - \rightarrow uses the relation between the concentration parameter C_{vir} and M_{vir} (eq. 3). Taken from Dolag et al., 2004.

(1
$$\overbrace{M_{vir}}) = \int_{0}^{R_{vir}} \rho_{cusped}(r) \times d^{3}\vec{r}$$

) $\bullet \rho_{200} = 200 \times (\rho_{\rm u} = 83)$
(2 $M_{vir} = \frac{4\pi}{3}\rho_{200} \times R_{vir}^{3}$ $M_{\rm sdar} / (kpc^{3})$
) (3 $C_{vir}(M_{vir}, z) = \frac{c_{0}}{1+z} \times \left(\frac{M_{vir}}{10^{14}h^{-1}M_{sun}}\right)^{\alpha}$ $\bullet C_{\rm vir} = R_{\rm vir}/r_{\rm s.}$
• $\bullet \alpha = -0.1$; $c_{0} = 9.6$ in a \land CDM cosmology (Dolag et al., 2004)

■But... $M_{vir} \neq M_{tot}$ → Iterative tidal stripping procedure to relate M_{vir} & M_{tot} .

Canis Major DM halo modelling

- ■Assumes that: $M_{txt} = M(r \le r_t)$, r_t tidal radius
- •r_t computed with an iterative tidal stripping procedure
- ${}^{\bullet}M_{tt} \approx 0.1 M_{vir}$ at the end of the procedure

 \rightarrow then we have $M_{tot} = f(\rho_0, r_s)$ and computation of the astrophysical factor $f^{AP} = f(M_s)$

M_{vir}	$ ho_0$	r_s	r_t	$M(r \le r_t)$	f^{AP}
$({ m M}_{\odot})$	$(10^8 \rm M_\odot~kpc^{-3})$	(kpc)	(kpc)	$({ m M}_{\odot})$	$(10^{24} \text{GeV}^2 \text{ cm}^{-5})$
10^{6}	4.7	0.04	0.28	$3.9 \ 10^5$	0.24
10^{8}	1.3	0.28	1.17	$3.1 10^7$	2.2
10^{10}	0.39	2.08	4.15	$1.9 10^9$	12

Limits on the Canis Major halo mass

•Assumes a fixed value for $\langle \sigma v \rangle$

•Relatively high value for $<\sigma v>$ (> 3×10^{-26} cm³ s⁻¹) to constrain the mass

Limits on $\langle \sigma v \rangle$

•Assumes $M_{tot} = 3 \times 10^8 M_{star}$ (Evans et al., 2004)

1) SUSY models: pMSSM

Red = pMSSM predictions compatible with the value of Ω_{CDM} as measured by WMAP.

$$<\sigma v>$$
^{95/CL} $\approx 5.10^{-24}$ cm³ s⁻¹

Limits on $\langle \sigma v \rangle$

•Assumes $M_{tot} = 3 \times 10^8 M_{sdar}$ (Evans et al., 2004)

2) Kaluza-klein models

Red = KK models compatible with the value of $\Omega_{\rm CDM}$ as measured by WMAP.

$$<\sigma v>^{95\%CL} \approx 5.10^{-25}$$
 cm³ s⁻¹

H.E.S.S. limits comparison

Competitive limits for Canis Major

Targets WIMPs model	pMSSM	<u>Kaluza-Klein</u>
Galactic Center (NFW)	<σν> ^{95/Δ} ~ 10 ⁻²³ cm ³ s ⁻¹	«σν» ^{99%,Ω} ~ 10 ⁻²⁴ cm ³ s ⁻¹
Sgr Dwarf (NFW)	<σν> ^{95/Δ} ~ 10 ⁻²³ cm ³ s ⁻¹	«σν» ^{95%,Ω} ~ 10 ⁻²⁴ cm ³ s ⁻¹
(Core)	<σν> ^{95%2} ~ 2.10 ⁻²⁵ cm ³ s ⁻¹	«σν» ^{95/4} ~ 5.10 ⁻²⁶ cm ³ s ⁻¹
CMa Dwarf (NFW)	«σv≠ ^{son} ~5.10 ^{se} cm³ s¹	к ом^ж4 ~510° ст³ s¹

Conclusions

- •No signal detected.
- •Halo modelling: no observational data. Assumed NFW + tidal stripping.
- •Close to exclude pMSSM predictions with higgsino-like neutralinos.
- No KK scenarios excluded.
- •Good limits in comparison with the other targets observed by H.E.S.S.