

Cosmological simulations of supermassive black hole binaries: spin evolution, coalescence time-scale and merger rate

Debora Sijacki

IAP, Paris, December 13, 2018

Current state-of-the-art in cosmological hydro simulations

The Eagle Project (Schaye et al. 15)

The Horizon AGN project (Dubois et al. 14)

Magneticum (Dolag et al. 14)

Illustris TNG (Springel et al. 17)

<u>SMBH feedback is the key for galaxy morphologies</u>

V∕ σ =0.2	V∕ σ =0.9	Horizon AGN		V/a=1.5	V∕ σ =2.0
$\log(M_s/M_{sun}) = 11.3$	$\log(M_s/M_{sun}) = 12.1$	$\log(M_s/M_{sun}) = 11.5$	$\log(M_s/M_{sun}) = 12.0$	log(M _s /M _{sun})=11.3	$\log(M_s/M_{sun}) = 11.7$
V/ <i>σ</i> =0.1	V/g=1.8	V/a=0.6	V/a=2.0	V/a=1.0	V/g=2.4
$\log(M_s/M_{sun}) = 11.8$	$\log(M_s/M_{sun}) = 12.6$	$\log(M_s/M_{sun}) = 11.5$	$\log(M_s/M_{sun}) = 12.1$	$\log(M_s/M_{sun})=11.6$	$log(M_s/M_{sun}) = 12.1$
V/ <i>σ</i> =0.0	V/ <i>σ</i> =1.5	V/ <i>a</i> =0.5	V/ <i>σ</i> =0.6	V/ <i>a</i> =1.0	V/ <i>σ</i> =1.5
100/M /M)=11.8	100(W (W)=12.6	hadhi (M.)-121	100(N /N)=13.0		hadki (ki)=125

<u>Caveats</u>

Majority of these models assume very massive seeds \rightarrow helps kick start BH growth for z ~6 QSOs

Majority of these models assumes all massive haloes have SMBHs seeds

Majority of these models assumes "Bondi-Hoyle"-like accretion → helps kick start BH growth and reach Eddington limit

Majority of these models neglects various early feedback processes, e.g. radiation from stars, stellar winds, etc. which could stall BH growth

BH seeding in large cosmological simulations

BH seeding: implications for observational constraints

BH seeding: implications for merger rates

BH seeding: implications for merger rates

8

DeGraf & Sijacki, 2019, MNRAS, to be submitted

Multi-messenger astrophysics with SMBH binaries

Cosmological Hydrodynamic Simulations

Massive BH Merger rates

Synthetic observations of EM counterparts and host galaxies

Team members: Tiziana Di Matteo, Gregory Snyder, Colin DeGraf, Debora Sijacki, Volker Springel, Kelly Holly-Bockelmann

Multi-messenger astrophysics with SMBH binaries

Debora Sijacki, Volker Springel, Kelly Holly-Bockelmann

Misaligned outer region

A SIMPLE MODEL FOR BH MASS AND SPIN EVOLUTION ASSUMING THIN, STEADY SS DISK COUPLED TO FULL HYDRO ON LARGER SCALES

Fiacconi, Sijacki & Pringle, 2018

Fiacconi, Piotrowska & Sijacki in prep.

INI DISKS CRUCIAL FOR BINARY DYNAMICS & SPIN EVOLUTION

<u>Merging supermassive black hole binaries</u> T_{g} (GM²_{bin} a₀⁻³)

Fiacconi, Piotrowska & Sijacki in prep.

Fiacconi, Piotrowska & Sijacki in prep.

The Future

