Massive black hole triplets as LISA sources

Matteo Bonetti Insubria University, Como

Alberto Sesana, Francesco Haardt, Enrico Barausse, Monica Colpi

Massive black hole binaries

Two MBHs in order to get close enough to emit detectable GWs have to cover a **huge spatial range**. They must rely on several astrophysical processes

What if...

Our Goal

Assess the implications of a sizeable population of MBH triplets

How?

Simulating MBH triplets in galactic nuclei with astrophysically and cosmologically motivated initial conditions

Part 1:

Integrate equations of motion of a wide set of triplets with different initial conditions.

Always a stalled binary + a third body

Part 2: Embed the results in a cosmological framework Simulate MBH triplets in galactic nuclei with astrophysically and cosmologically motivated initial conditions

3-body Newtonian dynamics + GR corrections up to 2.5PN

Part 1: Hamiltonians

Newtonian
$$H_0 = \frac{1}{2} \sum_{\alpha} \frac{|\vec{p}_{\alpha}|^2}{m_{\alpha}} - \frac{G}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{m_{\alpha} m_{\beta}}{r_{\alpha\beta}}$$

$$\begin{aligned} \mathbf{1PN} \\ H_1 &= -\frac{1}{8} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^2}{m_{\alpha}^2} \right)^2 \\ &- \frac{G}{4} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{1}{r_{\alpha\beta}} \left[6 \frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^2 - 7 \vec{p}_{\alpha} \cdot \vec{p}_{\beta} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \right] \\ &+ \frac{G^2}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{m_{\alpha} m_{\beta} m_{\gamma}}{r_{\alpha\beta} r_{\alpha\gamma}} \end{aligned}$$

2.5PN
$$H_{2.5} = \frac{G}{45} \dot{\chi}_{(4)ij}(\vec{x}_{\alpha'}, \vec{p}_{\alpha'}; t) \chi_{(4)ij}(\vec{x}_{\alpha}, \vec{p}_{\alpha})$$

$$\begin{split} H_{2} &= \frac{1}{16} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^{2}}{m_{\alpha}^{2}} \right)^{3} + \frac{G}{16} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{(m_{\alpha}m_{\beta})^{-1}}{r_{\alpha\beta}} \left[10 \left(\frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} \right)^{2} - 11 |\vec{p}_{\alpha}|^{2} |\vec{p}_{\beta}|^{2} - 2(\vec{p}_{\alpha} \cdot \vec{p}_{\beta})^{2} \\ &+ 10 |\vec{p}_{\alpha}|^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} - 12(\vec{p}_{\alpha} \cdot \vec{p}_{\beta})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) - 3(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ \frac{G^{2}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta} r_{\alpha\gamma}} \left[18 \frac{m_{\beta}m_{\gamma}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} + 14 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} |\vec{p}_{\beta}|^{2} - 2 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \\ &- 50m_{\gamma} (\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) + 17m_{\alpha} (\vec{p}_{\beta} \cdot \vec{p}_{\gamma}) - 14m_{\gamma} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \\ &+ 14m_{\alpha} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) + m_{\alpha} (\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta}^{2}} \left[2m_{\beta} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) + 2m_{\beta} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{8} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta}^{2}} \left[2m_{\beta} (\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma})^{2} - 14(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) (\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \right] \\ &+ \frac{G^{2}}{4} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \sum_{\beta \neq \alpha} \frac{m_{\alpha\beta}}{r_{\alpha\beta}^{2}} \left[\frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} + \frac{m_{\alpha}}{m_{\beta}}} |\vec{p}_{\beta}|^{2} - 2(\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{(n_{\alpha\beta} + n_{\alpha\gamma})(n_{\alpha\beta}^{2} + n_{\beta\gamma}^{2})}{(n_{\alpha\beta} + n_{\beta\gamma} + r_{\gamma\gamma})^{2}} \left[8m_{\beta} (p_{\alpha i}p_{\gamma j}) - 16m_{\beta} (p_{\alpha j}p_{\gamma j}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{(n_{\alpha\beta} + n_{\alpha\gamma})(n_{\alpha\beta}^{2} + n_{\beta\gamma} + r_{\gamma\gamma})r_{\alpha\beta}}{m_{\alpha}} \left[\frac{8m_{\alpha} m_{\gamma}}{m_{\alpha}} (p_{\alpha i}p_{\alpha j}) \right] \\ &- \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha} m_{\beta} m_{\gamma\gamma}}{(n_{\alpha\beta} + n_{\beta\gamma} + r_{\gamma\gamma})r_{\alpha\beta}} - \frac{16n^{2} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})^{2}}{m_{\alpha}}} \right] \\ &- \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha} m_{\beta} m_{\gamma\gamma}}{(n_{\alpha\beta} + n_{\beta\gamma} + r_{\gamma\gamma})r_{\alpha\beta}}}{m_{\alpha\beta} \vec{p}_{\beta\gamma}} + \frac{1}{2} \sum_{\gamma \neq \beta} \frac{m_{\alpha\beta} m_{\beta\gamma$$

Simulate MBH triplets in galactic nuclei with astrophysically and cosmologically motivated initial conditions

3-body Newtonian dynamics + GR corrections up to 2.5PN + interaction with stellar environment, i.e.,

- \blacktriangleright bulge potential (spherically symmetric)
- Dynamical Friction + stellar hardening (dissipative forces)

Part 1: exploration through simulations

Systematic survey of the parameter space

$m_1 - 10^5 - 10^{10} M_{\odot}$	$\log m_1$		% N		
$m_1 = 10$ 10 m_{\odot}	$[M_{\odot}]$	m_1 - m_2	m_1 - m_3	m_2 - m_3	Total
$\log q_{\rm in} = -1.5, -1.0, -0.5, 0.0$					
$\log q_{\rm out} = -1.5, -1.0, -0.5, 0.0$	5	16.8	0.9	0.8	18.5(1.6)
$e_{\mathrm{in}} = 0.2, 0.4, 0.6, 0.8$	6	16.2	1.4	1.0	18.5(1.9)
e = -0.3, 0.6, 0.9	7	15.4	2.5	1.4	19.4(4.4)
$c_{out} = 0.3, 0.0, 0.3$	8	14.7	4.0	2.5	21.2(6.3)
$\cos \iota = 13$ values equally spaced in $(-1,1)$	9	15.2	4.1	3.2	22.5(11.2)
	10	21.1	7.6	3.3	31.9(12.7)
14976 simulations					
Simulations					

We found that ~20-30% of otherwise stalled binaries actually undergo a merger. Main driver is the high eccentricity.

Part 1: exploration through simulations

Systematic survey of the parameter space

$m_1 = 10^5 - 10^{10} \mathrm{M}_{\odot}$	$\log m_1$	% Mergers			
$\log q_{\rm in} = -1.5, -1.0, -0.5, 0.0$	$[M_{\odot}]$	m_1 - m_2	m_1 - m_3	m_2 - m_3	Total
$\log q_{\rm out} = -1.5, -1.0, -0.5, 0.0$	5	16.8	0.9	0.8	18.5(1.6)
$e_{\rm in} = 0.2, 0.4, 0.6, 0.8$	6	16.2	1.4	1.0	18.5(1.9)
-020600	7	15.4	2.5	1.4	19.4(4.4)
$e_{\rm out} = 0.3, 0.0, 0.9$	8	14.7	4.0	2.5	21.2(6.3)
$\cos \iota = 13$ values equally spaced in (-1,1)	9	15.2	4.1	3.2	22.5(11.2)
	10	21.1	7.6	3.3	31.9(12.7)
14976					
aimulationa					

simulations

We found that ~20-30% of otherwise stalled binaries actually undergo a merger. Main driver is the high eccentricity.

- Secular 3-body dynamics (Kozai-Lidov mechanism)
- Chaotic 3-body dynamics (ejections, exchanges, strong encounters)

Systematic survey of the parameter space

Coupling the results to a cosmological merger tree + SAM

Infer the "cosmological weight" of each combination of surveyed parameters

Systematic survey of the parameter space

Coupling the results to a cosmological merger tree + SAM

SAM of Barausse (2012) and later expansions Ad-hoc recipe to include triple interactions in a cosmological framework

For both scenarios we consider two different MBH seeding recipes

Implications for LISA

Implications for LISA: mergers

We are mainly interested in single source detection

From the SAM we can infer the merger rate

$$\frac{\mathrm{d}N}{\mathrm{d}t} \times 4 \mathrm{yr}$$

Average number of mergers in 4 yr					
	HS-	LS-	HS-	LS-	
	stalled	stalled	delayed	delayed	
Triple	~42	~86	~36	~15	
Total	~42	~86	~90	~890	

Implications for LISA: mergers

We are mainly interested in single source detection

From the SAM we can infer the merger rate

$$\frac{\mathrm{d}N}{\mathrm{d}t} \times 4 \mathrm{yr}$$

How many events are effectively observable with LISA?

Average number of mergers in 4 yr					
	HS-	LS-	HS-	LS-	
	stalled	stalled	delayed	delayed	
Triple	~42	~86	~36	~15	
Total	~42	~86	~90	~890	

Qualitative answer

Note the difference according to seeding model

HS: all mergers are detected

LS: some mergers will be missed

$$\frac{\mathrm{d}^3 N}{\mathrm{d}z \mathrm{d}\log_{10}\mathcal{M}\mathrm{d}t} \times 4 \mathrm{yr}$$

Quantitave answer

To infer the detection rate we have to switch from a "time-domain" to a "frequency-domain" description

Quantitave answer

To infer the detection rate we have to switch from a "time-domain" to a "frequency-domain" description

Quantitave answer

To infer the detection rate we have to switch from a "time-domain" to a "frequency-domain" description

Implications for LISA: eccentricity

The eccentricity in the LISA band (i.e. when S/N = 8) can be quite high

The dynamical channel is the only evolutionary path (apart form very extreme case) that can leave such imprint

Conclusions & main results

- > Triple interactions can be a viable evolutionary channel
- Even in the most pessimistic scenario the merger rate is not heavily suppressed
- Triple induced mergers can enter the LISA band with high eccentricity, requiring specific waveform templates
 - How to fit in the main LISA science target: Astrophysically motivated catalogues of GW sources for
 - Setting requirements for accurate waveforms
 - Informing data analysis people about additional possible sources