

FACULTÉ DES SCIENCES Département d'astronomie

Black-Holes' Spin

Predicting the effective inspiral spin parameter distribution of binary black-hole mergers detected by current and future gravitational waves observatories

Simone S. Bavera - Geneva Observatory

Collaborators: Tassos Fragos, Ying Qin, Ilya Mandel, Coenraad Neijssel, Sebastian Gaebel, Aldo Batta, Chase Kimball

1st LISA Astrophysics Working Group Workshop

Institut d'Astrophysique de Paris, 13th December 2018

Formation scenarios

Chemical homogeneous evolution channel

Dynamical channel

Common envelope channel

Pictures: Mandel & Farmer (2018)

COMPAS

Stevenson et al. (2017, 2015), Barrett et al (2017), Mandel et al. (2016)

COMPAS

Stevenson et al. (2017, 2015), Barrett et al (2017), Mandel et al. (2016)

MESA Paxton et al. (2009, 2013, 2015, 2017)

Physics of the model

Winds: Hamann & Koesterke (1998), Vink & de Koter (2005)

Tides: Zahn (1975, 1979), Hut (1981) $E_2 = 10^{-0.93} \left(\frac{R_{conv}}{R}\right)^{6.7}$ Qin et al. (2018)

Supernova: Fryer et al. $(2011) \Rightarrow$ Rapid & Delayed mechanism

Star collapse: Bardeen (1970) & Thorne (1974)

Kiks: Kalogera (1996), Hobbs et al. (2005)

Picture: Batta (2018)

Picture: Martin et al. (2009)

Cosmology: SFR and Metallicity

Cosmology: SFR and Metallicity

Detection rate: Belczynski et al. (2016), Dominik et al. (2015)

$$R_{det} = \iiint R(z_{f}, z_{m}, m_{1}, m_{2}) p_{det}(z_{m}, m_{1}, m_{2}) \frac{dt_{m}}{dt_{det}} \frac{dV_{c}}{dz_{m}} \frac{dz_{m}}{dt_{m}} dm_{1} dm_{2} dt_{m} =$$

$$= \sum_{\Delta t_{i}} \sum_{j} \frac{fSFR(z_{f,j})}{M_{sim,\Delta Z_{j}}} f_{corr} 4\pi c D_{c}^{2}(z_{m,j}) p_{det}(z_{m,j}, m_{1,j}, m_{2,j}) \Delta t_{i}$$
where $fSFR(z_{f,j}) = SFR(z_{f,j}) \left[CDF\left(Z_{j} + \frac{\Delta Z_{j}}{2}\right) - CDF\left(Z_{j} - \frac{\Delta Z_{j}}{2}\right) \right]$

Model predictions

Cumulative distributions of χ_{eff} vs. data

 $\chi_{eff} = \frac{m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2}{m_1 + m_2} \hat{\mathbf{L}} \quad \text{where} \quad a_i = \frac{cJ_i}{GM_i^2} \quad \text{is the dimensionless spin}$ in out model $a_1 = 0$

$$M_{chirp} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \qquad \chi_{eff} = \frac{m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2}{m_1 + m_2} \,\hat{\mathbf{L}}$$

Delayed SN mechanism aLIGO 01/02 sensitivity

 $R_{det} \simeq 13 \, yr^{-1}$

aLIGO design sensitivity

Delayed mechanism Rapid mechanism Direct collapse (NO kicks) Delayed mec. (FULL kicks) $R_{det} \simeq 204 \ yr^{-1}$ $R_{det} \simeq 205 \ yr^{-1}$ $R_{det} \simeq 221 \ yr^{-1}$ $R_{det} \simeq 152 \ yr^{-1}$

How to constrain the SN mechanism?

Which events? Breivik (2016), Nishizawa et al. (2016), Seto (2016) LISA can detect BBHs with **eccentricities** $\geq 0.001 \Rightarrow$ new constraints for the SN mechanism

How to constrain the SN mechanism?

Which events? Breivik (2016), Nishizawa et al. (2016), Seto (2016)

LISA can detect BBHs with **eccentricities** $\geq 0.001 \Rightarrow$ new constrains for the SN mechanism

Model predictions for aLIGO at design sensitivity: 0.1% (rapid SN mechanism), 0.1% (delayed SN mechanism), 0.01% (direct collapse NO kicks), 24% (delayed SN FULL kicks) of detections have $e \ge 0.001$ 5 yr prior to merger

Predictions

Events with $e \ge 0.0015$ yr prior to the merger that will be detected by ground based detectors:

Delayed SN mechanism (FULL kicks)

Results:

- 1. Our model is capable of predicting **simultaneously** the **three main observables** inferred from current GWs detections
- 2. The model can make **predictions for LISA**
- 3. Detection of highly eccentric BBHs in the LISA bend might put **constrains on the SN mechanism** of the common envelope formation channel