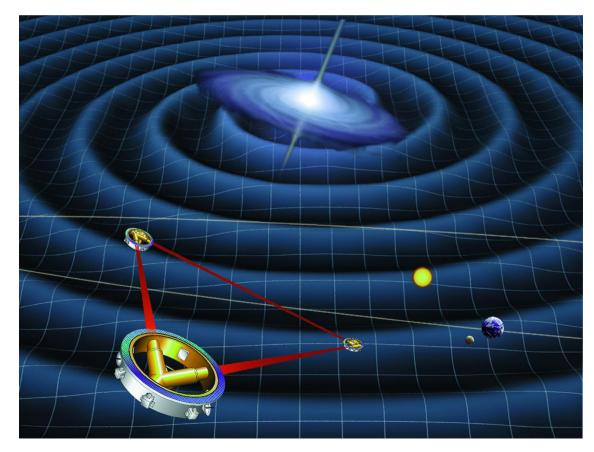
Can Supernova Kicks trigger EMRIs in the Galactic Centre?

E. Bortolas & M. Mapelli

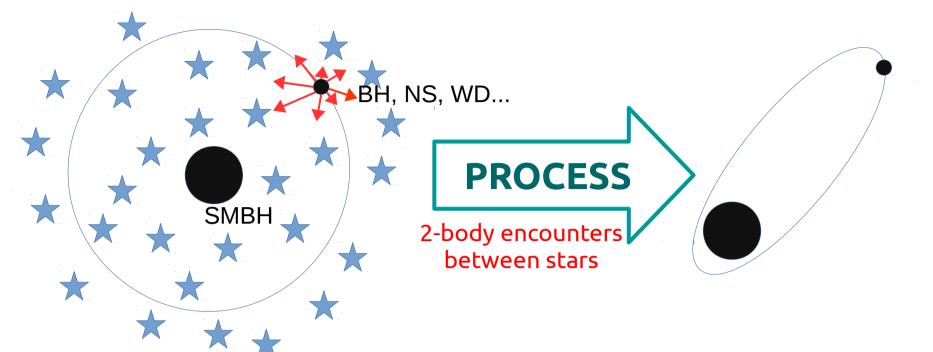
University of Zurich & University of Padova


1st LISA Astrophysics Working Group Workshop IAP, Paris, December 12th, 2018

Main collaborators L. Mayer, P. Capelo

Extreme mass ratio inspirals (EMRIS)

GW induced decay of a stellar mass compact object onto a SMBH



Observable by the LISA mission, ~10⁵ orbits! (Amaro-Seoane+2017)

Will give us unprecedented information on SMBH masses, spins and host environment + GR tests

(Amaro-Seoane+2007, Gair+2013, Barausse+2014)

How to trigger EMRIs in the LISA band?

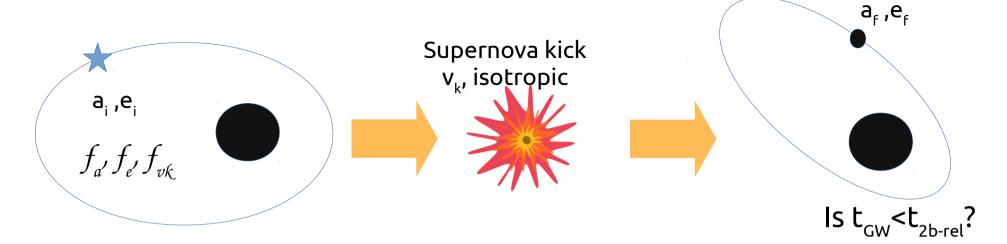
How to trigger EMRIs in the LISA band?

We propose a new recipe

PROCESS

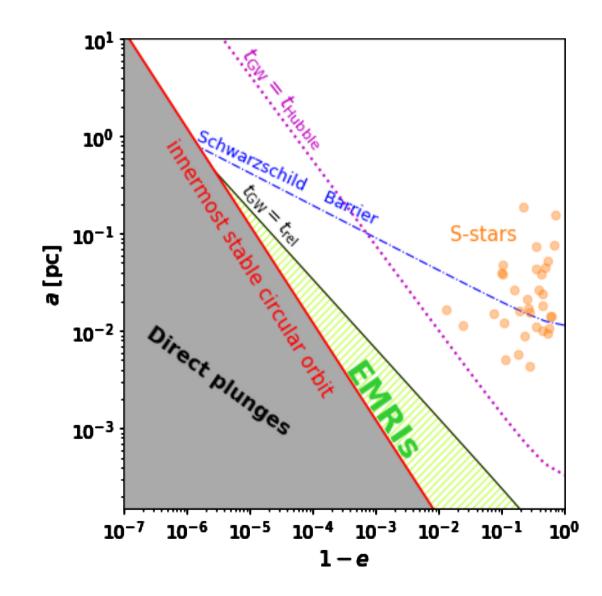
The compact object might be scattered on an EMRI orbit owing to its **supernova natal kick**

Star forming nucleus, SMBH with mass between 10⁴ and 107 Msun


SN kic

SN kicks in the Galactic Centre!

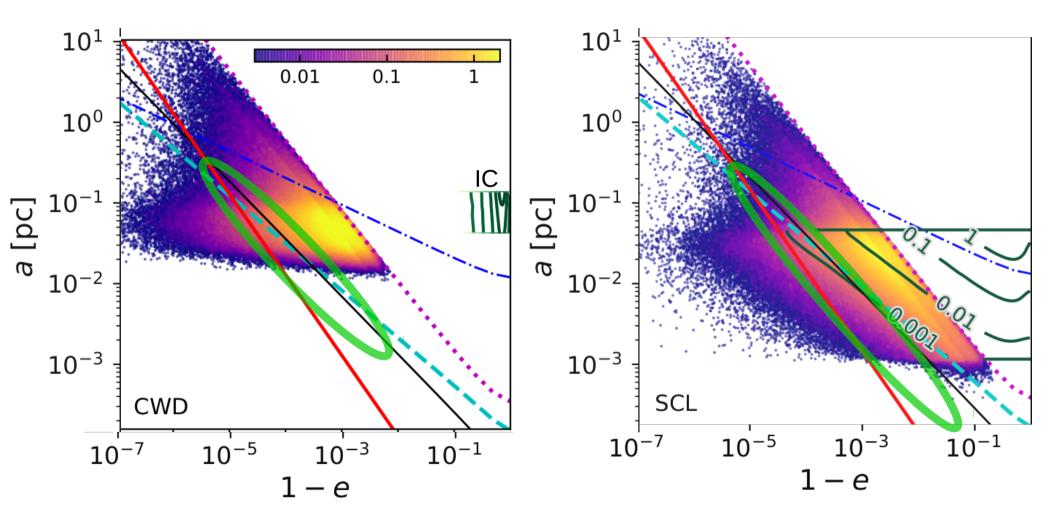
- Evidence of *central star formation* (e.g. Habibi+2017)
- SMBH with 4 million Msun (e.g. Schoedel+2002)
- 100-200 young stars (Clockwise disk)(Yelda+2014)
- S-cluster of B stars (Ghez+2003)
- Best known nucleus (only 8 kpc away)
- Top heavy mass function (Lu+2013)


Bortolas & Mapelli, to be submitted

Numerical approach

- Everything happens in the Galactic Centre
- Monte Carlo approach for distributing initial orbital parameters and kick velocities
- 4.3 × 10⁶ Msun SMBH
- Single stars, M>9 Msun
- PARSEC stellar evolutionary tracks (Bressan+ 2012, Spera+2015)
- Maxwellian velocity kicks with σ=265 km/s (Hobbs+2005) with and without slow down prescriptions for black holes

Where to produce EMRIs

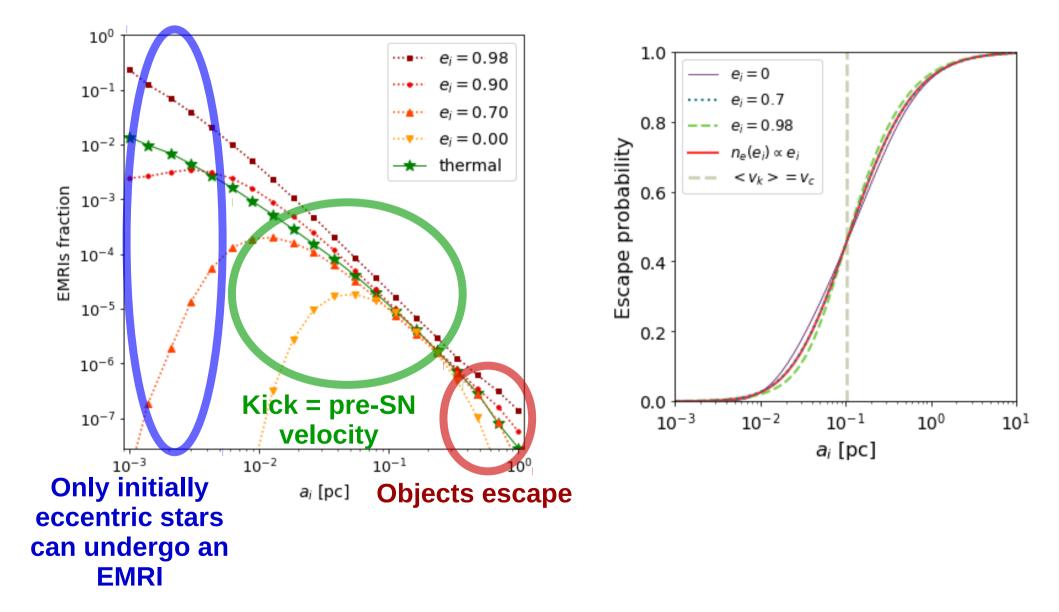


Clockwise disk

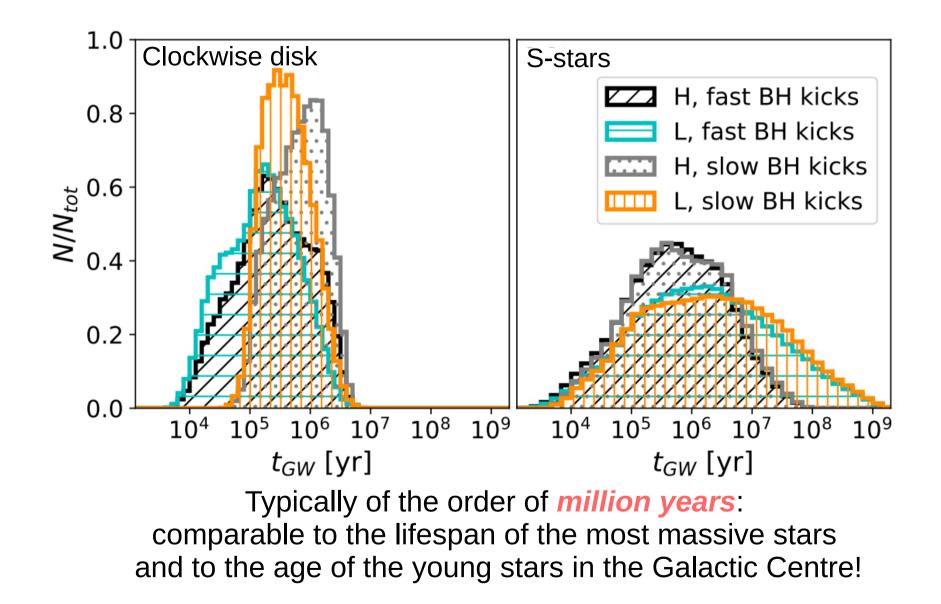
■ 0.04-0.13 pc ■ Top-Heavy IMF ■ Gaussian eccentricity distribution ■ Fast BH kicks (Yelda+2014, Do+2013)

S-stars

 0.001-0.04 pc Top-Heavy IMF Thermal eccentricity distribution Fast BH kicks (Gillessen+2017, Habibi+2017)



Probability (supernova remnant → EMRI): ~ 1 × 10 ^{- 5}


Probability (supernova remnant \rightarrow EMRI): 1 × 10⁻⁴ - 4 × 10⁻⁴

Probability for a supernova to induce an EMRI

Probability for a compact remnant to be ejected by the supernova

Inspiralling timescales

Supernova EMRIs mass function

'Fast' BH kick prescriptions = original population: 50% stellar BHs, **50%** neutron stars

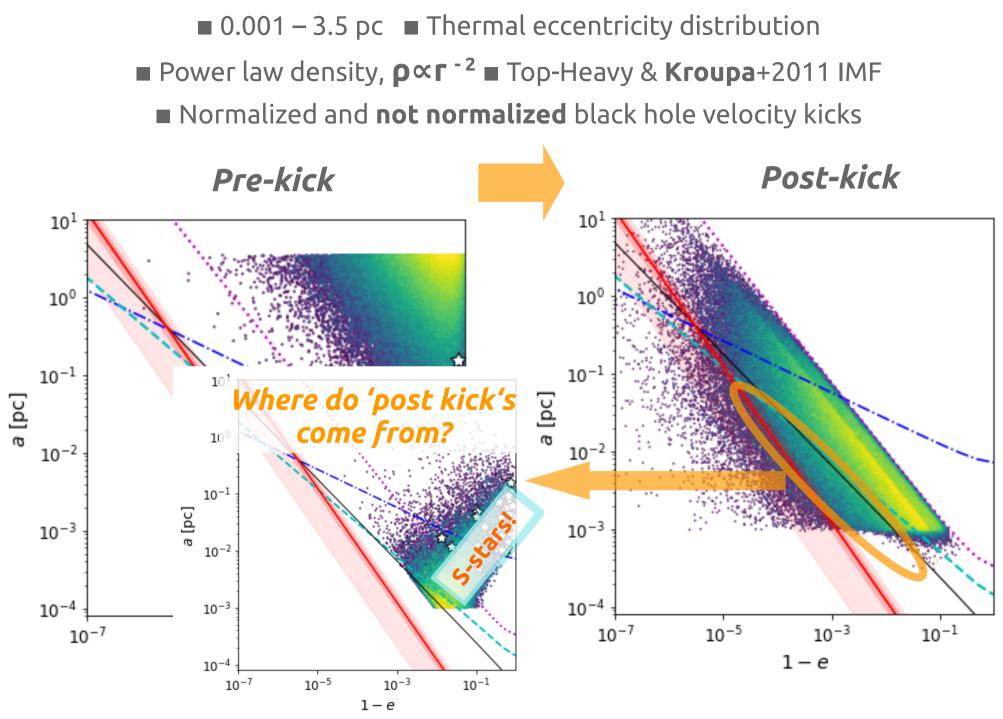
'Normalized' BH kick prescriptions:

1% stellar BHs, **99%** neutron stars (clockwise disc) **40%** stellar BHs, **60%** neutron stars (S-stars)

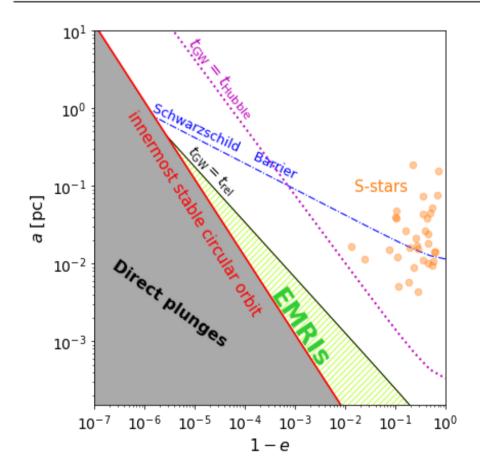
Supernova EMRIs: let's count them!

Probability (supernova remnant \rightarrow EMRI): 1 × 10⁻⁵ - 4 × 10⁻⁴ To be multiplied for (accounting for mass function, star formation rate...) 2 × 10⁻⁵ /νΓ

up to 10⁻⁸ /yr /Milky Way! (cf. up to 10⁻⁷ /yr owing to standard relaxation process)

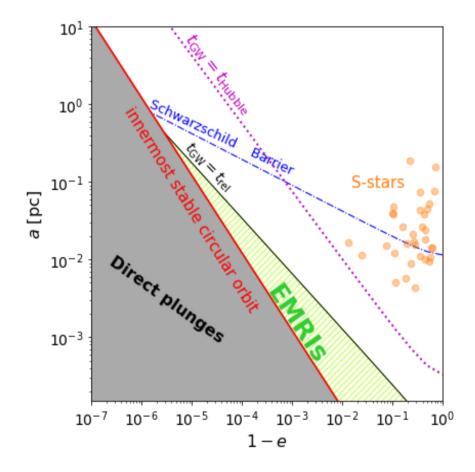

Considering the density of Milky Way-like galaxies (0.0116 Мрс³, коррагари+2008) ► Rate of **0.1 Gpc⁻³ yr⁻¹** Supernova EMRIs LISA will detect EMRIs up to z~1 ► **Up to 1-30 LISA detections per year**

Conclusions


- Supernova kicks induce EMRIs production in star forming nuclei hosting SMBHs
- The typical EMRI production timescale is of the order of Myr, i.e. comparable to the lifespan of massive stars and the young stars in the Galactic Centre
- Assuming natal kicks of stellar black holes to be slower than those of neutron stars, most SN-driven EMRIs involve neutron stars
- Our estimate suggests ~10% of EMRIs in Milky-Way like galaxies may be induced by supernova kicks, and we expect up to a few events every year

Bortolas & Mapelli, to be submitted

General Case



Population	EMRIs, H	EMRIs, L	direct plunges	unbound
CWD	$1.4 \times 10^{-5} \ (6.8 \times 10^{-6})$	$8.1 \times 10^{-6} \ (4.1 \times 10^{-6})$	$9.9 \times 10^{-6} \ (4.9 \times 10^{-6})$	$0.396\ (0.199)$
SCL	$3.2 \times 10^{-4} \ (2.7 \times 10^{-4})$	$4.2 \times 10^{-4} (3.7 \times 10^{-4})$	$9.8 \times 10^{-5} \ (9.0 \times 10^{-5})$	$0.118 \ (0.059)$
CP-G	$2.4 \times 10^{-6} \ (1.2 \times 10^{-6})$	$1.5 \times 10^{-6} \ (7.3 \times 10^{-7})$	$2.2 \times 10^{-6} \ (1.2 \times 10^{-6})$	$0.750 \ (0.408)$
CP-T	$3.7 \times 10^{-5} \ (2.9 \times 10^{-5})$	$6.4 \times 10^{-5} (5.6 \times 10^{-5})$	$1.0 \times 10^{-5} \ (1.0 \times 10^{-5})$	0.760(0.411)
SP-G	$6.6 \times 10^{-7} \ (3.4 \times 10^{-7})$	$2.8 \times 10^{-7} \ (1.4 \times 10^{-7})$	$1.0 \times 10^{-6} \ (6.4 \times 10^{-7})$	0.836(0.462)
SP-T	$2.2 \times 10^{-6} \ (2.1 \times 10^{-6})$	$2.2 \times 10^{-6} \ (1.9 \times 10^{-6})$	$1.6 \times 10^{-6} \ (3.2 \times 10^{-6})$	0.847 (0.464)

Population name	Label	$a_{i,\min}$ [pc]	$a_{i,\max}$ [pc]	γ_i
CW disc	CWD	0.040	0.13	1.93
S-cluster	SCL	0.001	0.04	1.10
concentr. profile, GE	CP-G	0.001	1.00	2.00
concentr. profile, TE	CP-T	0.001	1.00	2.00
shallow profile, GE	SP-G	0.001	1.00	1.25
shallow profile, TE	SP-T	0.001	1.00	1.25

Structure	Already in 'EMRI' region of ph. space		SN-EMRIs from 'EMRI'		COs staying in 'EMRI'	
	Н	\mathbf{L}	Н	L	Н	\mathbf{L}
SCL	$1 \times 10^{-5} (1 \times 10^{-5})$	$1 \times 10^{-4} \ (1 \times 10^{-4})$	1% (1%)	8% (15%)	24% (28%)	29% (47%)
CP-T	$4 \times 10^{-6} \ (4 \times 10^{-6})$	$3 \times 10^{-5} \ (3 \times 10^{-5})$	3% (4%)	20% (35%)	29% (31%)	37%~(55%)
SP-T	$6\times 10^{-8}~(6\times 10^{-8})$	$6 \times 10^{-7} \ (6 \times 10^{-7})$	1% (1%)	8% (14%)	24%~(30%)	31%~(48%)

