DE LA RECHERCHE À L'INDUSTRIE

Characterization of the FALSTAFF spectrometer first arm: Study of ²⁵²Cf and ²³⁵U fission fragments

Q. Deshayes¹, E. Berthoumieux¹, D. Doré¹, L. Thulliez¹, M.O. Frégeau², X. Ledoux², J. Pancin², S. Oberstedt³

Irfu, CEA, Université Paris-Saclay, France
 GANIL, Caen, France
 European Commission, Joint Research Centre, Geel, Belgium

Outlook

- Context
- Goals and Motivations
- Detectors
- ²⁵²Cf and ²³⁵U results
- Perspectives and Summary

Context

Nuclear Fission

Splitting of a nuclei into two (+ a few neutron)

Fission process timeline

- 1) Formation of fissionning system
- 2) Deformation up to to saddle point

3) Deformation up to the scission point4) De-excitation of primary fragments

Study of actinide fission in the fast energy domain

Study of actinide fission in the fast energy domain

Data needed :

- Few data in the fast neutron energy domain
 - New generation reactors
 - Neutron multiplicity and fission yields
 - Important for ND libraries
 - Knowledge about fission process
 - energy sharing
 - deformation...

Method

FF mass before evaporation $(A_{pre}) \rightarrow$ The 2V method

- Hyp: n evaporation does not modify average velocity

Measurement using time-of-flight (ToF) method

- Timing resolution : $\sigma_t \sim 150 \text{ ps}$
- Spatial resolution : $\sigma_{X,Y} \sim 2 \text{ mm}$

Method

FF mass before evaporation $(A_{pre}) \rightarrow$ The 2V method

- Hyp: n evaporation does not modify average velocity

Measurement using time-of-flight (ToF) method

- Timing resolution : $\sigma_t \sim 150 \text{ ps}$
- Spatial resolution : $\sigma_{X,Y} \sim 2 \text{ mm}$

FF mass after evaporation (A_{post}) \rightarrow The EV method

Energy loss corrections

Measurement using an energy detector + ToF

- Timing & position resolution similar to 2V
- Energy resolution **DE/E ~ 1 %**
- Energy loss profile →~Z

Method

FF mass before evaporation $(A_{pre}) \rightarrow$ The 2V method

- Hyp: n evaporation does not modify average velocity

Measurement using time-of-flight (ToF) method

- Timing resolution : $\sigma_t \sim 150 \text{ ps}$
- Spatial resolution : $\sigma_{X,Y} \sim 2 \text{ mm}$

FF mass after evaporation (A_{post}) \rightarrow The EV method

Energy loss corrections

Measurement using an energy detector + ToF

- Timing & position resolution similar to 2V
- Energy resolution **DE/E ~ 1 %**
- Energy loss profile →~Z

Position calculation

Q. Deshayes

Q. Deshayes

JRJC 2018

- Digitalization of anode signal
 - Possible to derivate
 - Smoothing methods

- Digitalization of anode signal
 - Possible to derivate
 - Smoothing methods

- Digitalization of anode signal
 - Possible to derivate
 - Smoothing methods

- Calibration experiment at IPNO
 Energy and energy loss profile studies
- ➢ (Br, I) between 60-100 MeV
- Elastic scattering at 30°

²⁵²Cf source Meierbachtol et al. This work 250 200 Yields (a.u.) 150 100 50 400 1000 1200 600 1400 1600 2000 800 1800 Energy (channel)

- Good agreement with literature
- Expected resolution

With a ²⁵²Cf source ...

Iterative procedure Energy loss corrections

With a ²⁵²Cf source ...

Iterative procedure Energy loss corrections

Loss of heavy fragments due to start detector problem

With a ²⁵²Cf source ...

Iterative procedure Energy loss corrections

²³⁵U results

Experiment at the Orphée reactor (Saclay)

- ✓ Target : ²³⁵U (8 & 20 µg, φ= 1 cm), CEA/DIF
- ✓ Thermal beam : 10^8 n/cm²/s
- ✓ Two parts : June 2018, Sept-Oct 2018

²³⁵U results

Experiment at the Orphée reactor (Saclay)

- ✓ Target : ²³⁵U (8 & 20 µg, φ= 1 cm), CEA/DIF
- ✓ Thermal beam : 10⁸ n/cm²/s
- ✓ Two parts : June 2018, Sept-Oct 2018

Analysis in progress

²³⁵U results

Experiment at the Orphée reactor (Saclay)

- ✓ Target : ²³⁵U (8 & 20 µg, φ= 1 cm), CEA/DIF
- ✓ Thermal beam : 10⁸ n/cm²/s
- ✓ Two parts : June 2018, Sept-Oct 2018

Analysis in progress

Comparisons Data & G4 Simulations

Comparisons Data & G4 Simulations

Comparisons Data & G4 Simulations

FALSTAFF@NFS

In 2021 : FALSTAFF @ NFS

- 2nd arm to fund and build
 - Mult neut vs fragment mass
 - ➢ ²³⁸⁻²³⁵U, ²³⁹Pu, ²³²Th, ²³⁷Np

FALSTAFF @ FIPPS (gamma ray spectrometer of ILL)

$(\gamma \gamma f)$ measurements

- Nuclear data in thermal fission with the best identification ever
- Calibrate Falstaff with fully identified fission fragments

Method :

- > FALSTAFF : E,V of one fragment → filter events with A₁ with $\delta A_1 = 2$
- FIPPS : identification of one γ-ray transition to the second fragment → (A₂, Z₂)
 study of other γ-rays from the cascade in the second fragment

\rightarrow Study of FF de-excitation and measurement of the fission yields

Summary

First arm of FALSTAFF is running with source AND neutron beam
 Expected resolutions seem to be reached

✓ Very promising results with the first arm of FALSTAFF

- ✓ Room for improvement
- Expecting the funding of the second arm
- Preparation of the experiment at FIPPS

Open to new collaborations !

Performance validation of the FALSTAFF first arm:

²⁵²Cf and ²³⁵U fission fragment characterisation

Q. Deshayes¹), E. Berthoumieux¹), D. Doré¹), L. Thulliez¹), M.O. Frégeau²), X. Ledoux²), J. Pancin²), S. Oberstedt³)

1) Irfu, CEA, Université Paris-Saclay, France 2) GANIL, Caen, France

3) European Commission, Joint Research Centre, Geel, Belgium

Thanks to:

- o DEDIP: P. Legou, M. Combet, M. Kebbiri, A. Marcel, J-P. Mols
- DPhN : P. Champion
- o Irfu : E. Blanchard
- o DPN/CEA-DIF : A. Chatillon, G. Bélier, V. Méot
- o Orphée Team