t leptons spin observables in the CMS experiment at the LHC

Journées de Rencontre des Jeunes Chercheurs 2018

Guillaume Bourgatte

Outline

- Tau reconstruction and identification
- Tau polarization and optimal variable in $\mathrm{Z} \rightarrow \pi$
- Analysis strategy
- Toward Higgs CP measurement

Outline

- Tau reconstruction and identification
- Tau polarization and optimal variable in $\mathrm{Z} \rightarrow \pi$
- Analysis strategy
- Toward Higgs CP measurement

t challenge

Pile-up

Heavy material

Fake τ from e^{-}, μ^{-}and jets

Neutrinos

Compact Muon Solenoid

Particle Flow

Identify and reconstruct all particles detected through an optimal combination of the information from the entire detector

Then combine this particles to build higher-level physics objects like the missing transverse energy, taus, b-tagging...

t reconstruction

Anti-kT algorithm (R=0.4) for Pflow jet reconstruction to seed tau reconstruction

Charged hadrons

$\mathrm{R}_{\text {iso, }}$ for isolation
$\mathrm{R}=0.5$
$R_{\text {sig }}$, variable size, collect charged hadrons
$p_{T}>0.5 \mathrm{GeV}$ inside a cone of variable radius $R=3 / p_{T}$

Neutral hadrons

$e^{ \pm}, \gamma$ with $p_{T}>1 \mathrm{GeV}$ clustered into "calorimeter strips" Strips barycentre has to be inside $R_{\text {sig }}$

Jets, electrons, muons can fake taus

Fake τ : Electron, muon or QCD jets misidentified as hadronically decaying tau leptons by the tau reconstruction algorithm

The main challenge in tau reconstruction is to discriminate between $\tau_{\text {had }}$ and QCD jets
The experimental signatures of hadronically decaying taus:

- collimated jet
- low multiplicity (up to three charged hadrons and up to two π^{0})
- decay products are isolated (require low detector activity around tau jet direction)

\rightarrow MVA Tau ID
Use isolation variables, t reco and kinematic variables, variables sensitive to the impact parameter and secondary vertex sensitive variables
\rightarrow Obtain a results between 0 and 1 which is the probability of being a real τ

Outline

- Tau reconstruction and identification
- Tau polarization and optimal variable in $\mathbf{Z} \rightarrow \mathbf{t \tau}$
- Analysis strategy
- Toward Higgs CP measurement

CP symmetry

CP symmetry : Product of two symetries. C for charge which transforms a particle into its antiparticle and P for parity which inverses spatial coordinates

Helicity : projection of the spin onto the direction of momentum $\quad h=\frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}= \pm 1$

Polarization : differencies between particles with $\mathrm{h}=+1$ and $\mathrm{h}=-1$ over the total number

$$
P_{\tau}=\frac{N^{-}-N^{+}}{N^{-}+N^{+}}=\frac{N^{-}-N^{+}}{N^{\text {total }}}
$$

The parity violation in the weak neutral current introduces the polarization asymmetry of τ leptons produced in $Z \rightarrow \tau \tau$

t polarization

Z^{0} couples differently according to the helicity \rightarrow Leptons polarization at the Z energy (Tree Level) :

$$
\left\langle P_{\tau}\right\rangle \simeq-2+8 \sin ^{2} \theta_{W}
$$

Observable bosons $\longrightarrow\binom{\gamma}{Z^{0}}=\left(\begin{array}{cc}\cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W}\end{array}\right)\binom{B^{0}}{W^{0}} \quad$ Gauge bosons

т polarization provides:

- Measurement of the ratio of vector to axial-vector neutral couplings for t leptons
- Measurement of effective weak mixing angle $\sin ^{2} \theta_{w}$

t decays

Mode	Decays channel	Branching ratio (\%)
Leptonic	$\tau \rightarrow \mathrm{e} \bar{\nu}_{\mathrm{e}} \nu_{\tau}$	17.82
	$\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$	17.39
Hadronic	$\tau \rightarrow \Pi^{ \pm} \nu_{\tau}$	10.82
	$\tau \rightarrow \rho^{ \pm} V_{\tau} \rightarrow \pi^{ \pm} \pi^{0} V_{\tau}$	25.49
	$\tau \rightarrow \rho^{ \pm} V_{\tau} \rightarrow \pi^{ \pm} 2 \pi^{0} V_{\tau}$	9.26
	$\tau \rightarrow \rho^{ \pm} V_{\tau} \rightarrow \Pi^{ \pm} 3 \pi^{0} V_{\tau}$	1.04
	$\tau \rightarrow \mathrm{a}_{1} \nu_{\tau} \rightarrow 3 \pi^{ \pm} \nu_{\tau}$	8.99
	$\tau \rightarrow \mathrm{a}_{1} \nu_{\tau} \rightarrow 3 \pi^{ \pm} \pi^{0} \nu_{\tau}$	2.74

τ polarization in $Z \rightarrow \tau \tau$

Acollinearity angle: angle between the two charged pions from the two $\tau_{\text {had }}$ in Z rest frame

Only feasible for τ decaying in $\pi^{ \pm}$and hardly usable because difficult helicities separation

Acoplanarity angle: angle between plans formed by the τ decay products in $\mathrm{h}^{+} \mathrm{h}^{-}$rest frame

Not optimal because up to 16 plots have to be measured for example

$\tau \rightarrow \pi V_{\tau}$ channel

$$
\pi^{ \pm} \text {spin }=0 \rightarrow \cos \theta_{\pi}^{*} \text { gives the } \tau \text { helicity }
$$

$\tau \rightarrow \mathrm{a}_{1} \nu_{\tau}$ channel

a_{1} spin $=1 \rightarrow \theta_{a_{1}}^{*}$ doesn't give anymore the τ helicity because a_{1} is polarized

Righ handed

Left handed

α, β and γ angles

$$
\vec{n}_{a_{1}}-\vec{n}_{\perp} \text { plan }
$$

a: azimutal angle between $\overrightarrow{n_{\perp}}$ in the a_{1} rest frame and $\overrightarrow{n_{a 1}}$ $\alpha \in[0,2 \pi]$
β : polar angle between $\overrightarrow{n_{\perp}}$ in the a_{1} rest frame and $\overrightarrow{n_{a 1}}$ $\beta \in[0, \pi]$
y : rotation of the $3 \pi^{ \pm}$plan around $\overrightarrow{n_{\perp}}$
$y \in[0,2 \pi]$

Optimal variable

Decay distributions depend linearly of the polarization: $W(\vec{\xi})=f(\vec{\xi})+P_{\tau} g(\vec{\xi})$
With $\vec{\xi}$ the vector of all spin sensitive kinematic variables
Let $\omega=\frac{g(\vec{\xi})}{f(\vec{\xi})}=\frac{\left|M_{+}(\vec{\xi})\right|^{2}-\left|M_{-}(\vec{\xi})\right|^{2}}{\left|M_{+}(\vec{\xi})\right|^{2}+\left|M_{-}(\vec{\xi})\right|^{2}} \Rightarrow W(\vec{\xi})=f(\vec{\xi})\left[1+P_{\tau} \omega\right]$
With $M_{ \pm}$the matrix element of the decay with helicity ± 1

For N measurements and P_{T} let as free parameter, the maximum likelihood is:

$$
\begin{aligned}
& L=\left(\vec{\xi}, P_{\tau}\right)=\prod_{i=1}^{N}\left\{f(\vec{\xi})+P_{\tau} g(\vec{\xi})\right\}=\prod_{i=1}^{N}\left\{f(\vec{\xi})\left[1+P_{\tau} \omega_{i}\right]\right\} \\
& \frac{\partial \log \left(L\left(\vec{\xi}_{i}, P_{\tau}\right)\right)}{\partial P_{\tau}}=\sum_{i=1}^{N} \frac{\partial \log \left(1+P_{\tau} \omega_{i}\right)}{\partial P_{\tau}}+0=\sum_{i=1}^{N} \frac{\omega_{i}}{1+P_{\tau} \omega_{i}}=N\left\langle\frac{\omega}{1+P_{\tau} \omega}\right\rangle=0
\end{aligned}
$$

Optimal variable

Polarimetric vector: Unit vector which is in the most probable direction of the τ spin calculated in the τ rest frame

If all decay products are reconstructed $\rightarrow f=1 / 2$ and $g=1 / 2 \cos \theta_{h}$

$$
\omega=\cos \theta_{h}
$$

Fit with the relative fraction of the two helicities as a free parameter

Variable validated with 8 TeV data Plot from Vladimir Cherepanov 2016

Optimal variable

The optimal variable for the τ pair is defined as: $\Omega=\frac{\omega_{1}+\omega_{2}}{1+\omega_{1} \omega_{2}}$

$\approx 100 \%$ anti-correlation of τ leptons spins \rightarrow allows a very good separation so good news for analysis

Outline

- Tau reconstruction and identification
- Tau polarization and optimal variable in $\mathrm{Z} \rightarrow \pi$
- Analysis strategy
- Toward Higgs CP measurement

$\tau_{h} \tau_{h}$ channel

Trigger : Two taus isolated using charged tracks and photons (or only charged tracks), Pt>35 GeV, $|\eta|<2.1$

+ Matching with DeltaR <0.5
Id and Kinematic:
t_{1} and t_{2} :
- pt > 36 GeV \&\& $|\eta|<2.1$
- Vertex: |dz| < 0.2
- Against Muon Loose \&\& against Electron Very Loose
- τ charge $= \pm 1$

Pair creation

$\operatorname{DeItaR}\left(\boldsymbol{\tau}_{\mathrm{h}}, \boldsymbol{\tau}_{\mathrm{h}}\right)>0.5$
Selection of the most isolated pair for each event

MC used
DY+Jets
$\mathrm{W}+\mathrm{Jets}$
tt
$\mathrm{WW} \rightarrow 2 \mathrm{I} 2 \mathrm{v}$
WZ
$\mathrm{ZZ} \rightarrow 2 \mathrm{I} 2 \mathrm{v}$
$\mathrm{ZZ} \rightarrow 2 \mathrm{l} 2 \mathrm{q}$
$\mathrm{ZZ} \rightarrow 4 \mathrm{I}$

Tau Isolation : Tight
Third Lepton Veto
Opposite Sign Pairs

Background Estimation

Outline

- Tau reconstruction and identification
- Tau polarization and optimal variable in $\mathrm{Z} \rightarrow \pi$
- Analysis strategy
- Toward Higgs CP measurement

t to study Higgs CP properties

- Best channel for observing Higgs boson fermionic decays
- Can be use for lepton non-universality searches
- And for Lepton Flavor Violation searches

CP violation in the tau Yukawa coupling

$L_{Y}=g_{\tau}\left(\cos \alpha_{\tau} \bar{\tau} \tau+\sin \alpha_{\tau} \bar{\tau} \gamma_{5} \tau\right)$
$\alpha_{T}=0$ in the SM
Studying transverse correlation in Z boson decays allows us to study the transverse correlation of the Higgs
$C_{T T}=-C_{T N}=\frac{F_{2}(s) \sin ^{2} \theta}{1+P_{Z} \operatorname{Pf} 2 \cos \theta /\left(1+\cos ^{2} \theta\right)}$
$C_{T N}=\frac{A_{T N} \sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)}{1+P_{Z} P f 2 \cos \theta /\left(1+\cos ^{2} \theta\right)}$
$Z \rightarrow \tau \tau$ analysis useful because it's the main background of $H \rightarrow \tau$
We can extract the Higgs parity from the correlations between the τ decay products in the plane transverse to the $\tau^{+} \tau^{-}$axes

Transverse spin correlation

Acoplanarity angle can be build using direction of taus in Higgs rest frame and polarimetric vectors

Tau lepton workshop 2018

Transverse spin correlation

Acoplanarity angle can be build using direction of taus in Higgs rest frame and polarimetric vectors

Tau lepton workshop 2018

Conclusion

- A competitive precision to LEP can be achieved using spin variables to measure θ_{w} at LHC
- My thesis aims the transverse correlation measurements in the Z boson which will be used for the Higgs
- Since it's discovery, the Higgs seems to be the standard Higgs \rightarrow Need to looking for a CP violation in the τ Yukawa coupling
- Useful tool useable for other analysis/experiments

Thanks for your attention

Backup

Jets

A collimated bunch of hadrons flying roughly in the same direction
Pure QCD effect

The classification of particles into jets is best done using a clustering algorithm

Past measurements

$$
\begin{aligned}
& C_{T T}=1.06 \pm 0.13(\text { stat }) \pm 0.05(\text { syst }) \\
& C_{T N}=0.08 \pm 0.13(\text { stat }) \pm 0.04(\text { syst })
\end{aligned}
$$

Sensitivity

Decays channel	Theoretical sensitivity
$\tau \rightarrow e \bar{v}_{e} \nu_{\tau}$	0.27
$\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$	0.27
$\tau \rightarrow \pi^{ \pm} \nu_{\tau}$	0.58
$\tau \rightarrow \rho^{ \pm} \nu_{\tau}$	0.58
$\tau \rightarrow a_{1} \nu_{\tau}$	0.58

Sensitivity reaches the value of 0.73 for any combination of hadronic decays of τ^{+}and τ^{-}

